Engine conversion of tricycle taxis

The Philippine experience in developing and using small scale transport methodologies

Tricycle – common transportation

12 in a Tricycle . . .

15 in a Tricycle!!!

Tricycles in the Philippines

≈evolved from Kalesa
≈1,300,000 registered tricycles in the Philippines
≈wide variety of driving conditions
≈refurbished forever and ever
≈No AC.

Rational

- Dirty 2-stroke units are high emitters of CO, HC, and particulates (1 tricycle =>50 automobiles)
- A 2-stroke ban is an unrealistic & ineffective solution:
 - Carbureted 4-strokes offer limited GHG emissions reduction

- direct injection 2-stroke engines are cleaner than carbureted 4-stroke engines
- Carbureted 4-stroke replacement is very expensive and delivers zero economic payback to the driver
- Dirty 2-stroke units will merely be transferred elsewhere

Human Impact of Dirty 2-Stroke Pollution

- Residents of many Asian cities must wear masks or breathe through rags
- Commercial taxi drivers often suffer the highest rates of respiratory illness; a World Bank study shows drivers are too sick to drive 7 days each month
- School children are among the most frequent passengers and are particularly vulnerable & disproportionately affected
- Many Asian cities are heavily dependent on commercial dirty 2stroke vehicle transportation
- In the Philippines, dirty 2-stroke taxi's provide the primary income for ≈ 1.3 million working class families and make up 30% of the transportation sector

Huge environmental & health issue

Human Impact of Pollution - Philippines

Carburetion vs. Direct Injection

Carbureted 2-Stroke

Direct Injected 2-Stroke

Methodology Development Clarification of the Applicability of AMS III.C – Version 10 (Nov 2007) "low-greenhouse gas emitting vehicle" SSC_WG Reply: "AMS III.C deals with project situations involving the replacement of complete vehicles and not components thereof . . . " "In addition, the retrofitting of existing vehicles

with more efficient component does not fit into type III projects as it clearly belongs to type II projects....."

Initial issues in meth development

Developed based on clients practices + IPCC + AMS III.C Applicability conditions Constant level of service Energy use per unit of service not energy per unit time. Baseline Combustion efficiency vs. Energy efficiency (EB 32 paragraph 28)

Next meth draft

Based on comments of initial draft + AMS III.S
Level of service deemed constant by sampling both baseline vehicles and project vehicles for the duration of the crediting period.
Monitoring of actual fuel consumption of a sample of vehicles. (data from ECU)

Approved AMS III.AA

Using instead a constant route Final applicability conditions Simplified monitoring parameters – distance, efficiency, number of project vehicles

Project Issues & Challenges Communicating local conditions **User Perception** Market penetration R&D costs Funding Economies of scale vs. Market conditions Model specific retrofit kits Country/community specific practices (TODAs)

CDM related issues and challenges

Lack of data – data must be generated and verifiable to determine an appropriate baseline. Vehicle lifetime - forever? How to prove and validate lifetime of vehicles used for a very long time. How to prove conservativeness of data? Baseline fuel efficiency (how to measure efficiency under a wide variety of driving conditions, weather conditions and practices) -CDM Specific research and surveys (lifetime, efficiency, distance)

Conclusions / Recommendations

- Specific conditions for project implementation
- Project developers and CDM consultants need to think differently for small scale transport projects. (timing, data gathering etc)
- Additions to transaction costs due to project specific data gathering and research.
- •Need for country specific baseline data to be easily accessible.
- Necessity of PoA for small transport projects