

New project types in CDM waste sector:

Landfill aeration - Current and future applications -

Dr.-Ing. Marco Ritzkowski

Hamburg University of Technology, Institute of Environmental Technology and Energy Economics Harburger Schloßstr. 36, D - 21079 Hamburg www.tuhh.de/iue m.ritzkowski@tuhh.de

- Global warming is the result of a change in the atmospheric balance caused by anthropogenic emissions of Greenhouse **Gases** (GHG)
- **Methane** (CH₄) emissions account for > 14 % of the total GHG emissions

Paddy fields

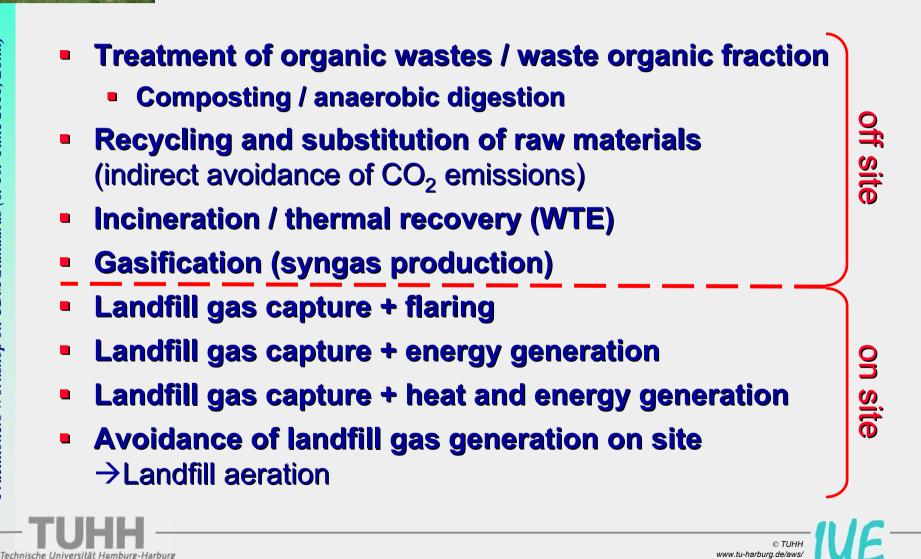
Landfills

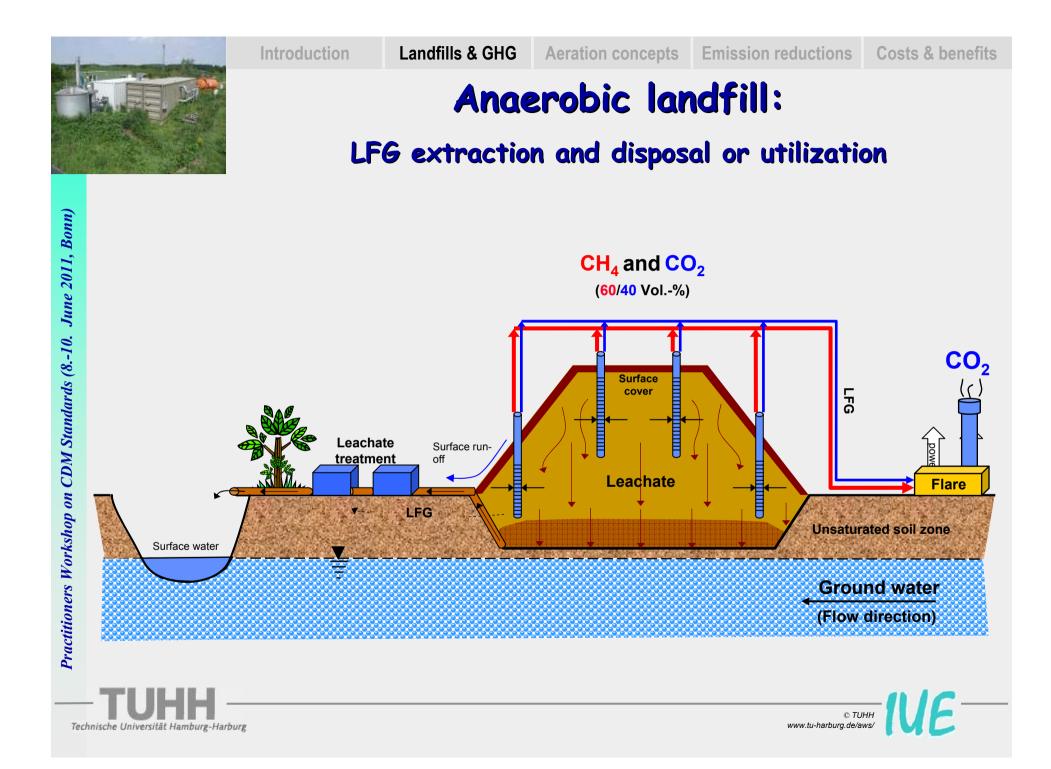
85 M tons CH₄/year

60 M tons CH₄/year

~ 40 M tons CH₄/year

Source: IPCC Climate change 2007 - Synthesis report




Aeration concepts

Emission reductions

Costs & benefits

Landfills & GHG

Approaches by IPCC - Evaluation -

 Climate projects (JI/CDM) for <u>direct</u> avoidance of LFG emissions are ecologically sound, potentially create economical benefits but might prevent other (further) emission reduction measures.

Example:

Practitioners Workshop on CDM Standards (8.-10. June 2011, Bonn)

 Many CDM projects are based on LFG cap ('simple technique, cost effective') 	oture and flaring
Registered CDM projects (06/2011):	3131
Waste handling & disposal sector:	544
LFG projects:	137
LFG capture and flaring:	76 (approx. 56%)
Potential for energy generation: approx. 0.0	63 m tons CH₄ /a
(→ approx. 8,500 GWh/a; i.e. ≈ 1 nuclear p	power plant)
Source: UNFCCC – CDM Statistics (http://cdm.unfccc.int/Statistics/index.l	<u>html</u>) 06/2011

© TUHH www.tu-harburg.de/aws/

Approaches by IPCC - Evaluation -

- The emission behaviour is mainly temporarily improved (avoidance of uncontrolled CH₄ emissions); after the project landfills might still exhibit a significant emission potential:
 - Continuous methane generation
 - Leachate pollution on a high level
 - Settlements not completed

Alternative or additional approach:

- Aerobic in situ stabilisation (Landfill Aeration)
 - Short and long term avoidance of methane generation
 - Reduced leachate pollution
 - Settlements (widely) completed

Technische Universität Hamburg-Har

Practitioners Workshop on CDM Standards (8.-10. June 2011, Bonn)

Concepts for landfill aeration

Semi-aerobic landfill concept (NM0333)

Aeration driven by the temperature difference between the waste and the ambience ("passive" aeration concept)

Air venting (AM0083)

Aeration as a result of induced negative pressure inside the landfill ("overdrawing concept")

Low pressure aeration (AM0083)

Aeration by compressed air; parallel extraction (and treatment) of the off-gases ("active" aeration concept)

High pressure aeration (no methodology so far)

Pulsed aeration by high pressures; air enriched with oxygen; parallel extraction (and treatment) of the off-gases

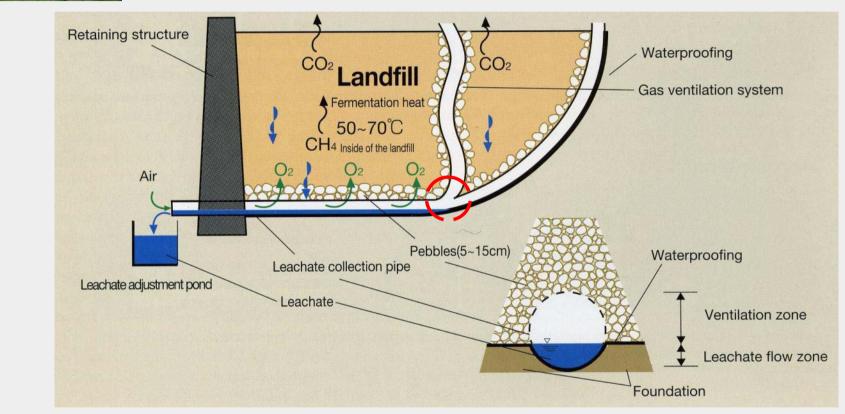
© TUHH www.tu-harburg.de/aws/

© TUHH www.tu-harburg.de/aws/

Landfill aeration in the framework of **CDM** projects

- **CDM-Methodology NM0333**
 - "Avoidance of landfill gas emissions by passive aeration of landfills"
- Not yet approved by the CDM Executive Board; Meth Panel 49 (May 2011): "external expertise on appropriate N₂O emission factor is needed"
- Aims and characteristic:
 - Avoidance of anaerobic conditions inside the landfill
 - Conversion of anaerobic landfill to semi-aerobic conditions
 - Reduction of methane emissions; faster bio-stabilisation
 - Does not require mechanically induced air injection, thus very limited in operation costs and indirect CO_{2.e} emissions

Practitioners Workshop on CDM Standards (8.-10. June 2011, Bonn)


© TUHH

www.tu-harburg.de/aws/

Practitioners Workshop on CDM Standards (8.-10. June 2011, Bonn)

Semi-aerobic landfill concept (type 1)

Two options (types):

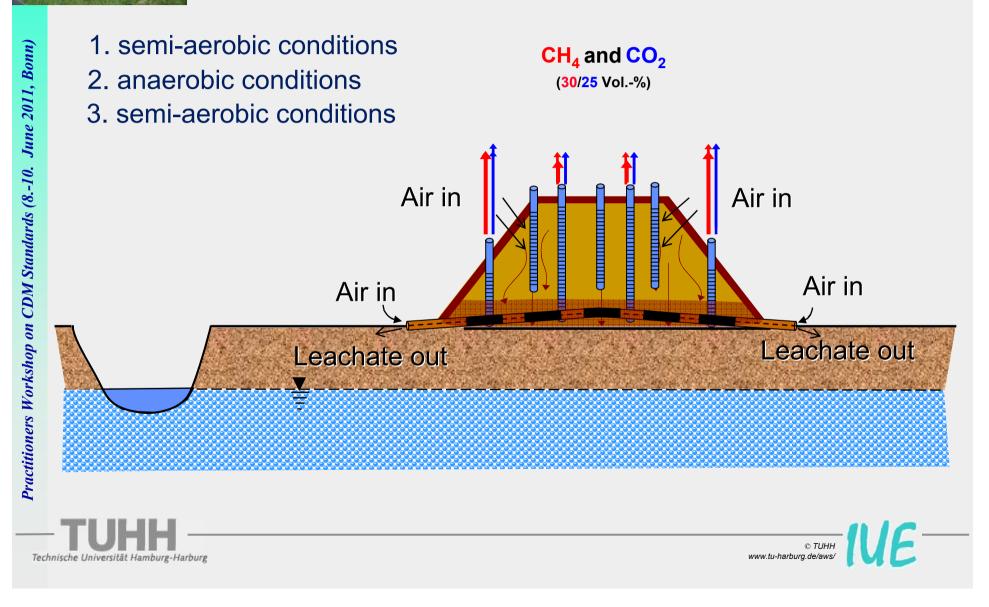
1)Gas wells connected to the leachate collection pipes (for new LF constructions) 2)Gas wells without direct connection to the leachate pipes (for LF remediation)

Landfills & GHG

Semi-aerobic landfill (Example type 1)

Aeration concepts

Costs & benefits


Landfills & GHG

Semi-aerobic landfill (Example type 2)

Aeration concepts

Costs & benefits

Emission reductions

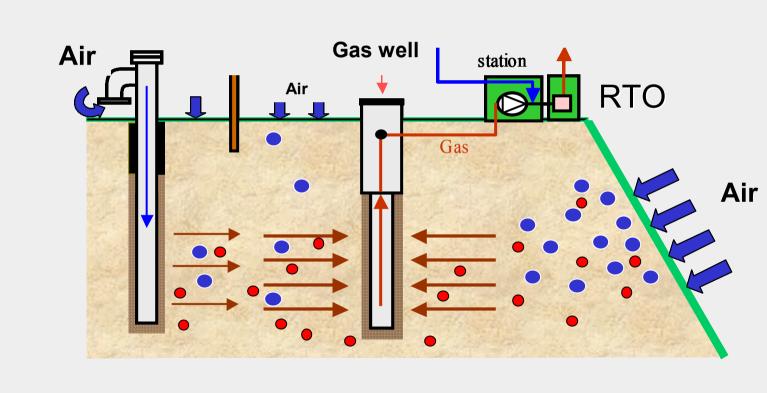
Introduction Landfills & GHG

Semi-aerobic landfill (Example type 2)

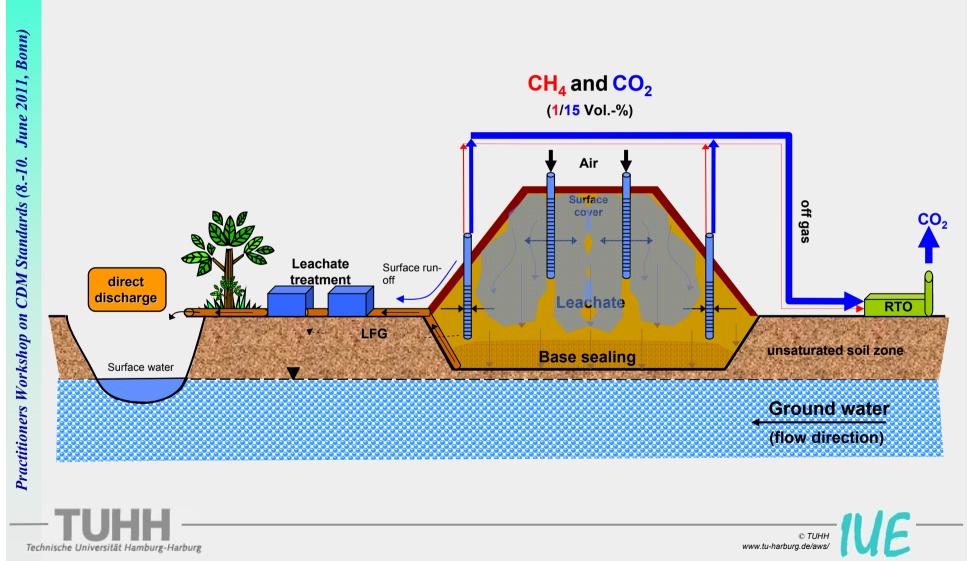
Landfill aeration in the framework of **CDM** projects

CDM-Methodology AM0083

Introduction


- "Avoidance of landfill gas emissions by in-situ aeration of landfills"
- Approval by the CDM Executive Board in July 2009
- Aims:
 - Reduction of methane emissions
 - Creation of environmentally compliant landfills
 - Shortening of landfill aftercare
- **Concepts**:

Air venting and low pressure aeration


TUHH Source: J. Heerenklage, TUHH Technische Universität Hamburg-Harburg

Practitioners Workshop on CDM Standards (8.-10. June 2011, Bonn)

Landfills & GHG Aeration concepts

Emission reductions Costs & benefits

Aerated landfills (examples, D)

Introduction

Examples world wide

- Aerated Landfills in Germany
 - Kuhstedt, Amberg-Neumühle, Milmersdorf, Dörentrup, Schwalbach-Griesborn, Süpplingen (all by means of low pressure aeration)
 - Kiel Drachensee, Schenefeld (air venting)
- Aerated Landfills in Austria
 - Mannersdorf, Pill, Heferlbach (LPA)
- Aerated Landfills in Italy
 - Sassari, Legnago (LPA)
- Aerated Landfills in the USA
 - NY, NJ, TN, MI, FL, KY, CA, AZ
- Aerated landfills in Switzerland and The Netherlands
 - Sass Grand (SUI); Almere, Landgraaf (NL) (AV (SUI); LPA (NL))

Semi-Aerobic Landfills in Japan and Malysia

CDM methodology AM0083 - Calculation of emission reductions -

Aeration concepts

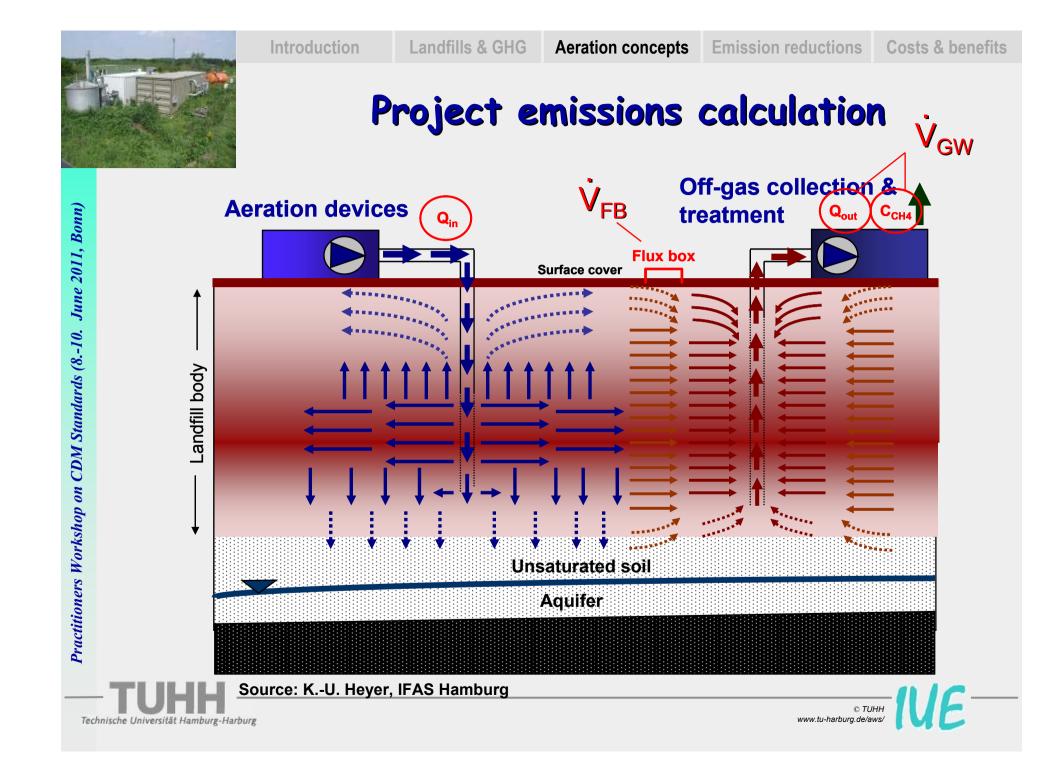
Emission reductions

Costs & benefits

© TUHH www.tu-harburg.de/aws/

Comparison between the status without CDM project activity ("Baseline") and the actual project emissions (incl. secondary emissions from energy production and fossil fuel consumption)

Landfills & GHG


Baseline emissions:

Only CH_4 -emissions; N_2O -emissions are supposed to be irrelevant under anaerobic conditions

- \rightarrow 3 stage calculation (!)
- Project emissions:

Technische Universität Hamburg-Harburg

 CH_4 and N_2O emissions, CO_2 from energy production and fossil fuel consumption

Aeration concepts Emission reductions

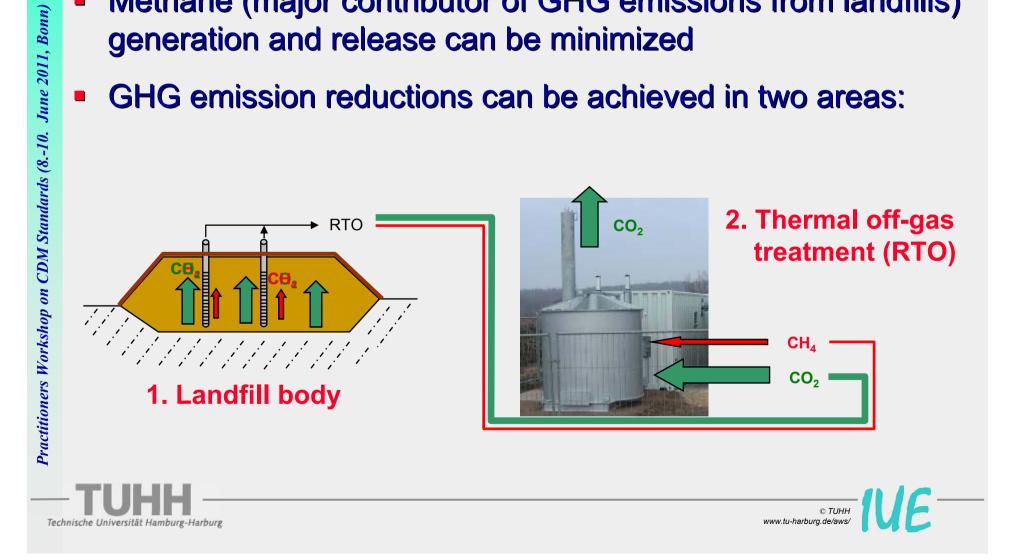
Costs & benefits

© TUHH www.tu-harburg.de/aws/

MSW landfills in "non annex I countries" (CDM-projects)

Landfills & GHG

- No or limited legal or contractual obligations for LFG recovery
- Amount of biodegradable organic carbon: 40 60 kg per ton waste; up to 70% (90% with RTO) of the resulting CH₄ emissions avoided by LF aeration (secondary emissions: 10%; N₂O according to IPCC default value (0.027 kg/Mg TS))


> Approach:

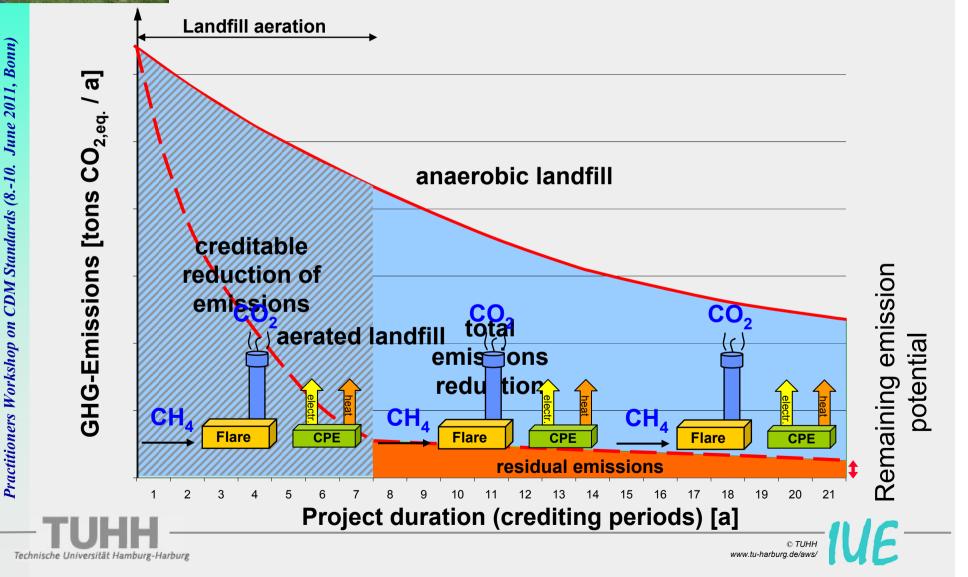
- Landfill aeration after LFG projects or as an alternative to LFG capture and flaring
- Thermal off-gas treatment not mandatory (NM0333, AM0083); but it would significantly increase the project performance

Assessment and balance of GHG emissions from aerated LF

- Methane (major contributor of GHG emissions from landfills) generation and release can be minimized
- GHG emission reductions can be achieved in two areas:

Practitioners Workshop on CDM Standards (8.-10. June 2011, Bonn)

Emission reductions (anaerobic and aerobic landfills)


Landfill / example	Annual ER (per ton TS) [kg CO _{2.e} / Mg TS*a]	Annual ER (per project) [Mg CO _{2.e} / a]	Crediting period [a]
Anaerobic landfills (CDM LFG-projects*, according to PDD's)	10 – 100	180.000	7 (21) or 10
Aerobic landfill (planned CDM project in Israel, according to PDD)	30	20,000	7
Aerobic landfill (example from Germany)	30	4,750	6
Aerobic landfills 1 million tons MSW (non Annex I countries)	40 – 70	42,000 – 68,000	7
Semi aerobic landfill (planned CDM project in Malaysia, according to PDD)	~ 15	43,000	8

as per 09/2010; projects based on ACM0001 and AMS-III.G; UNFCCC/CDM

- Reduction of GHG emissions -

Costs & benefits

Landfill aeration - Critical remarks -

General:

- Uncertainty regarding the actual amount of N₂O emissions
- Risks related to increased temperatures during aeration
- Emission reductions potentially limited without RTO integration
- Creditable reduction of emissions is limited
- Air venting:

- •Aeration is secondary effect; at first increase in the amount of captured biogas (i.e. increase in CH_4 emissions)
- Semi-aerobic concept:
- Emission reductions probably limited (CH₄ flux, not concentration !)
- Discontinuous measurement of PE might be critical

Costs & benefits

Costs vs. Benefits

<u>Costs:</u>

- Very rarely in literature
- For low pressure aeration:

D:

approx. 1 to 3€ per m³ of landfilled waste*

A:

approx. 2 to 5€ per m³ of landfilled waste*

Benefits:

- Reducing CH₄ emissions from landfills
- Reducing the duration of LF-aftercare – reducing the costs for LF-aftercare
- Improving the quality of leachate – reducing the costs for leachate treatment
- Enhanced environmental conditions

* depending on various factors such as existing infrastructure and landfill volume

Practitioners Workshop on CDM Standards (8.-10. June 2011, Bonn)

Practitioners Workshop on CDM Standards (8.-10. June 2011, Bonn)

Thank you very much for your atention!

© TUHH www.tu-harburg.de/aws/