

Potentials and barriers to recycling in the current CDM framework

Bonn, 9 June 2011

Bernhard Gerstmayr Tobias Koch

bifa in a brief

Potentials of sustainable waste management

Barriers to sustainable waste management within the current CDM and approaches to improvements

- AMS III.AJ (recycling methodology)
- The FOD model
- AM 0025

bifa in a brief

- Founded in 1991
- Long-standing expertise in waste management

• Shareholders:

 Federal State of Bavaria
 City of Augsburg

 Stadt
 Stadt

 Augsburg
 Augsburg

Chamber of Industry and Commerce of Swabia

OI

environmental

bifa environmental institute

Engineering

Process engineering (mechanical, biological, thermal, chemical)

(Specialized) Analytics and test procedures

Machinery & plant design

Consultation

Management

Political consultation

Communication

System analysis

IT

Information systems

Databases

Internet applications

References: How does bifa support modern MSW management in the context of UNFCCC?

Guide for waste management companies on behalf of the German Ministry for the Environment

Scientific publication

NAMA proposal **Methane prevention through sustainable biowaste treatment in Tunisia** (on the internet: <u>http://www.jiko-</u> <u>bmu.de/service/download/doc/99</u> <u>4.php</u>)

on behalf of the German Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

in cooperation with Tobias Koch

bifa in a brief

Potentials of sustainable waste management

Barriers to sustainable waste management within the current CDM and approaches to improvements

- AMS III.AJ (recycling methodology)
- the FOD model
- within AM 0025

Landfillgas CDM can only avoid less then 50% of GHG emissions

It's the organic content

Emissions of waste worldwide (cf. UNEP study "Waste and Climate Change. *Global Trends and Strategy Framework"*)

- waste sector "in a strong position to move from being an emissions source to being a major emissions saver"
- average annual per capita waste generation in developing countries is rising in response to economic and population growth
- levels of uncertainty can be as high as 10-30 per cent for developed countries (with good data sets) to more than 60 per cent for developing countries that do not have annual data.

Source:

www.unep.or.jp/letc/Publications/spc/Waste&ClimateChange/Waste&ClimateChange.pdf

"...composting has the distinction of being the waste management system with the largest number of failed facilities worldwide. In cities of developing countries, most large mixed-waste compost plants, often designed by foreign consultants and paid for by aid from their home countries, have failed or operate at less than 30% of capacity. The problems most often cited for the failures of composting include: high operation and management costs, high transportation costs, poor quality product as a result of poor presorting (especially of plastic and glass fragments), poor understanding of the composting process, and competition from chemical fertilizers (which are often subsidized)" Sound Practices Composting, 1.4.1, www.unep.or.jp/ietc/estdir/pub/msw/sp/sp4/sp4 1.asp

→ MSW treatment projects highly additional

→ Landfills are least cost alternative

bifa in a brief

Potentials of sustainable waste management

Barriers to sustainable waste management within the current CDM and approaches to improvements

- AMS III.AJ (recycling methodology)
- the FOD model
- AM 0025

The Polyethylene recycling methodology AMS III.AJ

- Approved in 26. March 2010
- Restricted to HDPE and LDPE only, other materials to be included
- bifa the only stakeholder to comment the proposed methodology in early 2010
- Version 02 of the Methodology picks up some of the remaining critics after approval of version 01 (*e.g. max. 200 km distance*)

	bifa environmental institute
	Comment on the proposed methodology SSC NM043
	The proposed recycling methodology SSC NM043 from an eco balancing perspective
Receiver:	UNFCCC
Authors:	Max Müller
	Augsburg, February 8th 2010

environmental

institute

AMS III.AJ – issues that require a better solution Boundaries

bifa environmental institute

- → Neglects a big share of the GHG reduction potential of PE recycling for reasons of conservativeness:
 - transportation
 - raw feedstock extraction of the primary resource

AMS III.AJ – issues that require a better solution *Monitoring*

To avoid double-counting the methodology requires to observe the PE market three years in advance of the activity:

- PE from Annex I countries
 no CER (since it is then an Annex I reduction)
- " ------" from Non-Annex I countries
 → CER
- →Yet there is no practical guidance available on how to conduct such a monitoring

→Especially in LDC's it will proof very difficult

Proposal: Referring to world market statistics for HDPE production:

Waste Management: AM0025

- 54 projects using AM 0025 under validation (partly already for several years)
- 41 of these are composting projects
- 17 are registered (some 4 years ago)
- 0 CERs issued so far

Source: IGES CDM database 5 -2011

bifa in a brief

Potentials of sustainable waste management

Barriers to sustainable waste management within the current CDM and approaches to improvements

- AMS III.AJ (recycling methodology)
- the FOD model
- AM 0025

Comparison of scientific models for Methan generation

CO2 eq per ton of MSW

CER issuance over time

DI environmental institute Year of project activity 2 11 12 13 14 15 16 17 18 19 20 21 10 1 3 4 5 6 8 9 7 20.000 10.000 0 Emissions per year in t CO2e -10.000 -20.000 -30.000 -40.000 -50.000 -60.000 -70.000 -80.000 Baseline methane boreal arid Leakage 📕 Operations, 📜 Resulting emission reductions logistics

Composting and the "post-mortem" problem – here: project ending after 7 years with no more waste being disposed afterwards environmental

10.06.2011

Emission avoidance of MSW management in comparison to energy saving lamps

	MSW treatment	Energy Efficiency
Investment	Upfront	Upfront
Activity of project operator	Upfront	Usage of the lamp for several years
Deemed Emission avoidance	At time of waste being processed	During usage
Potential for loss	None (as emission is avoided instantly)	When equipment malfunctions or ceases to exist
Monitoring when?	Moment of MSW elimination	During lifetime of the lamp

→ Sustainable waste treatment eliminates the source of emissions at one! No later leakage etc.!

10.06.2011

Table 1: Possible sustainability factors for diverse types of waste management techniques reducing landfill gas emissions

waste management techniques	effective emission reductions performed in t CO ₂ e	sustainability factor	CER's allocated
landfill gas flaring	100	< 1	<100
landfill gas utilization	100	< 1	<100
waste incineration incl. energy generation	100	1,1	110
MSW digestion	100	1.7	170
MSW composting	100	1.5	150

bifa in a brief

Potentials of sustainable waste management

Barriers to sustainable waste management within the current CDM and approaches to improvements

- AMS III.AJ (recycling methodology)
- the FOD model
- AM 0025

Barriers to successful Implementation of waste treatment

- Complexity of Methodology
- Multiphase approach deprives investors of earnings in the first years and creates windfall profits in later years
- Required data difficult to obtain
- Methodology incomplete & more than 20 errors and mistakes
- Involvement of municipalities early in the project cycle contractual problems
- Very difficult to validate /difficult to find DOE
- Nearly impossible to be verified
- Very risky technology –no market for products

→ Sustainable waste treatment projects are not bankable!

Monitoring of AM 0025 – high degree of complexity

Picture shows monitoring plan only for option composting with biogas for auto generation of power. \rightarrow 46 Parameters have to be monitored

10.06.2011

Problems with monitoring of AM 0025 from practice

- Sampling of waste consistency requires
 250 samples per year
- Oxygen deficit measurement in compost can be manipulated limitless without trace
- Emissions from compost transport by informal sector can not be monitored
- Potential emissions from recyclables outside project boundary can not be controlled
- "Safety Flare" monitoring totally out of scale

→ Monitoring requirements surpass by far abilities of project participants in developing countries

AM 0025 now – Summary

- 12 Versions Still more than 20 errors
- Baseline model error up to 60% (literature!)
- Multiphase model unjust (cf. part Gerstmayr)
- Perverse incentives to increase emissions
- Emission reductions form recycling and compost usage not accounted
- Penalties for utilization of recyclables or compost
- Complexity overstrains projects developers, DOEs, etc.
- More than 50% calculation error in registered projects
- Validation takes years, verification is nearly impossible.
- Projects are hardly bankable.

→ Simple degassing is far more attractive within the CDM

Reform of AM0025 - Target

- Create simplified methodology for composting and waste sorting/recycling
- Provide default values for fast validation and allow real life ex-post measurement
- No desincentive of for usage of recyclables
- Limit excess sampling
- Remove excess parameters
- Create simple monitoring plan
- Enable DOE to validate and verify quickly

→Enhance environmental integrity

Proposed changes in baseline calculation

 $\varphi \cdot (1 - f) \cdot \text{GWP}_{\text{CH}_4} \cdot (1 - \text{OX}) \cdot \frac{16}{12} \cdot \text{F} \cdot \text{DOC}_f \cdot \text{MCF} \cdot \sum_{x=1,j}^{V} W_{j,x} \cdot \text{DOC}_j \cdot e^{-k_j \cdot (y-x)} \cdot (1 - e^{-k_j})$

- Increase conservativeness of correction factor ϕ from 0.9 to 0.5.
- *OX* =1 (always)
- MCF =1 (future development not past)
- Include missing discount for water content of waste for using DOCj "dry" values.
- k = 1 (no shifting of CER into the future)

Fixing the Baseline without multiphase approach

Proposed changes in monitoring of AM 0025 (1)

- General deduction of 50 % for baseline error would cover all possible changes in the future as well as leakages and small emission sources.
- Demand humidity measurement with DOCj= dry to reduce model error

Ex-Post measurement of dry weight of waste fractions is not problematic and allows adjustment to all climatic zones and waste collection systems

• MCF has to look into the future and not at past for waste management to avoid perverse incentives

Proposed changes in monitoring of AM 0025 (2)

- Reduce number of waste samples to max 12 per year.
- Allow sampling of waste streams after sorting.
- No leakage for transport of waste or recycables
- No monitoring of safety flares (only gas volume)
- For windrow oxygen deficit and waste water just let DOE monitor good practice
- Encourage recycling! No emission penalties for offsite usage
- Allow participation of informal sector

- Please start revision right now and have stakeholders included within the revision process
- Putting methodology on hold would hit those hard that are have been in the process of project appraisal for several years
- Putting methodology on hold would stop waste disposal in many cities danger for pubic health!
- Terminate multiphase approach!
- Allow ex-post adjustment for existing projects to avoid failure during verification
- → Please mind DEC 2012 deadline!

Thank you very much!

Bernhard Gerstmayr, M. Sc. Project Manager e-mail: bgerstmayr@bifa.de tel. ++ 49 8217000198 Tobias Koch Balderrie Energies e-mail: t.koch@balderrie.com tel. ++49 1717557480

Annex: DOC_i values in the methane tool

۲

UNFCCC/CCNUCC

CDM – Executive Board

EB 61 Report Annex 10 Page 5

UNFOOD

bita

institute

environmental

Data / Parameter:	DOCi			
Data unit:	-			
Description:	Fraction of degradable organic carbon (by weight) in the waste type j			
Source of data:	IPCC 2006 Guidelines for National Greenhouse Gas Inventories (adapted from			
	Volume 5, Tables 2.4 and 2.5)			
Values to be	Apply the following values for the different waste types j:			
applied:				
	Waste type j	DOCi	DOC	
		(% wet waste)	(% dry waste)	
	Wood and wood products	43	50	
	Pulp, paper and cardboard (other than sludge)	40	44	
	Pulp, paper and cardboard (other than sludge) Food, food waste, beverages and tobacco	40 15	44 38	
	Pulp, paper and cardboard (other than sludge) Food, food waste, beverages and tobacco (other than sludge)	40	44 38	
	Pulp, paper and cardboard (other than sludge) Food, food waste, beverages and tobacco (other than sludge) Textiles	40 15 24	44 38 30	
	Pulp, paper and cardboard (other than sludge) Food, food waste, beverages and tobacco (other than sludge) Textiles Garden, yard and park waste	40 15 24 20	44 38 30 49	

→ "% dry waste" is misleading language – "dry weight of waste" would be correct

Annex: DOC_i values stated in IPCC

	of wet weight 1	DOC content in % of wet waste		DOC content in % of dry waste		Total carbon content in % of dry weight		Fossil carbon fraction in % of total carbon	
	Default	Default	Range	Default	ange ²	Default	Range	Default	Range
Paper/cardboard	90	40	36 - 45	44	40 - 50	46	42 - 50	1	0 - 5
Textiles 3	80	24	20 - 40	30	25 - 50	50	25 - 50	20	0 - 50
Food waste	40	15	8 - 20	38	20 - 50	38	20 - 50	-	-
Wood	85 4	43	39 - 46	50	46 - 54	50	46 - 54	-	-
Garden and Park waste	40	20	18 - 22	49	45 - 55	49	45 - 55	0	0
Nappies	40	24	18 - 32	60	44 - 80	70	54 - 90	10	10
Rubber and Leather	84	(39) 5	(39) 5	(47) 5	(47)5	67	67	20	20
Plastics	100	-	-	-	-	75	67 - 85	100	95 - 100
Metal ⁶	100	-	-	-	-	NA	NA	NA	NA
Glass 6	100	-	-	-	-	NA	NA	NA	NA
Other, inert waste	90	-	-	-	-	3	0 - 5	100	50 - 100
¹ The moisture content g collected waste or from during handling. ² The range refers to the 2001: Lager and Blok.	iven here applies n e.g., SWDS the minimum and ma 1993: Würdinger	to the specifi moisture cor ximum data et al. 1997:	ic waste type itent of each reported by and Zeschm	es before the waste type Dehoust et a ar-Lahl, 200	y enter the c will vary by al., 2002; Ga	collection an moisture of ingdonggu,	d treatment. I co-existing v 1997; Guend	In samples t waste and w ehou, 2004;	aken from eather JESC,

⁵ Natural rubbers would likely not degrade under anaerobic condition at SWDS (Tsuchii et al., 1985; Rose and Steinbüchel, 2005).

⁶ Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.

 \rightarrow DOC_i dry values have to be adjusted with % of waste humidity at disposal site