

Standardized Baselines for Projects in Rice Cultivation

Practitioners Workshop on CDM Standards

Bonn, 8-10 June 2011

Felix Nickel FutureCamp Climate GmbH

Development of AMS-III.AU

Title: Methane emission reduction by adjusted water management practice in rice cultivation

_ First CDM methodology that addresses emissions from soil/plants

- _Submission of first draft in December 2009, approved at EB60
- _ Several rounds of consultation between PP and SSC WG since then
- _Various improvements, broadening of applicability

AMS-III.AU contributes to

- _ aim to expand mitigation activities to agricultural sector
- _aim to facilitate access to CDM, at limited transaction costs
- _knowledge about methane emissions from rice
- __mitigate vulnerability of rice farming by spreading knowledge on modern cultivation practices (as such includes an adaptation element)

_limate bmbH

Case: Transplanted \rightarrow Direct Seeded Rice

- __Reduced emissions due to reduced flooding of rice fields
- _Host country: Indonesia
- _ Managing Entity: Bayer CropScience
- Programme includes provision of seeder and training
- $_ {\tt Co-benefits}$
 - Water saving
 - Potential for higher yield
 - Shorter cultivation period
 - Enhanced stress resistance of rice plants

Key Element: Methane Measurement Guidance

- ___Background: no standards, no up-to-date guidance available
- _Approach: literature research by experts from IRRI
- $_$ Determines conditions for design and process of field measurement
- _Aim: reliable and representative emission data, cost effective and manageable approach
- _Includes guidance on
 - Chamber design
 - Sampling
 - Laboratory analysis
 - Calculation
 - Precondition for everything: involvement of experienced staff

Baseline Approach

- _ Measurement of methane flux with chamber method
- Consideration of main methane influencing factors (water regime, organic amendments, soil characteristics) \rightarrow if necessary, stratification of fields Nr. Parameter Type¹ Values/Categories Source/Method²

Nr.	Parameter	Type ¹	Values/Categories	Source/Method ²
1	Water regime	Dynamic	Continuously flooded	Baseline: Farmer's information
	- on-season ³		Single Drainage	Project: Monitoring
			Multiple Drainage	
2	Water regime	Dynamic	Flooded	Baseline: Farmer's information
	- pre-season		Short drainage (<180d)	Project: Monitoring
			Long drainage (>180d)	
3	Organic	Dynamic	Straw on-season ⁵	Baseline: Farmer's information
	Amendment		Green manure	Project: Monitoring
			Straw off-season ⁵	
			Farm yard manure	
			Compost	
			No organic amendment	
4	Soil pH	Static	< 4.5	ISRIC-WISE soil property
			4.5 - 5.5	database ⁶ or national data
			> 5.5	
5	Soil Organic	Static	< 1%	ISRIC-WISE soil property
	Carbon		1-3%	database ⁶ or national data
			> 3%	
6	Climate	Static	$[AEZ]^7$	Rice Almanac, HarvestChoice ⁷

Baseline Approach

- _ Measurement of methane flux with chamber method
- Consideration of main methane influencing factors (water regime, organic amendments, soil characteristics) \rightarrow if necessary, stratification of fields Nr. Parameter Type¹ Values/Categories Source/Method²

Nr.	Parameter	Type ¹	Values/Categories	Source/Method ²
1	Water regime	Dynamic	Continuously flooded	Baseline: Farmer's information
	- on-season ³		Single Drainage	Project: Monitoring
			Multiple Drainage	
2	Water regime	Dynamic	Flooded	Baseline: Farmer's information
	- pre-season		Short drainage (<180d)	Project: Monitoring
			Long drainage (>180d)	
3	Organic	Dynamic	Straw on-season ⁵	Baseline: Farmer's information
	Amendment		Green manure	Project: Monitoring
			Straw off-season ⁵	
			Farm yard manure	
			Compost	
			No organic amendment	
4	Soil pH	Static	< 4.5	ISRIC-WISE soil property
			4.5 - 5.5	database ⁶ or national data
			> 5.5	
5	Soil Organic	Static	< 1%	ISRIC-WISE soil property
	Carbon		1-3 %	database ⁶ or national data
			> 3%	
6	Climate	Static	[AEZ] ⁷	Rice Almanac, HarvestChoice ⁷

How would rice projects benefit from standardization?

_AMS III.AU monitoring of baseline emissions for a group of fields:

- Set up 3 reference fields, cultivated according to the determined "baseline" cultivation method
- At least once a week, three different air samples are taken from each reference field
- Air samples (in syringes) are immediately to be taken to a laboratory for analysis
- → staff, chambers, transport, laboratory capacity has to be organized and paid
- → Standard baseline EFs can help to reduce project specific costs

_ However: project emissions still have to be measured

Relevant issues and their appraisal in rice cultivation (I)

Issue	Relevance in rice cultivation method	
Scope of development	 Suitable scopes: Baseline scenario identification Baseline emissions calculation Additionality demonstration 	
Mandatory or optional	Leaving an option to develop project specific factors could serve as incentive to improve the data base	
Procedural requirements	 Bottom-up or Top-down Involvement of national authorities necessary Regional perspective on BL parameters Environmental aspects Possible input from UNFCCC reporting Involvement of agricultural institutions 	
Priorities	Agriculture as priority area (Cancun statements)	
Access of underrepresented regions to CDM	Agriculture is underrepresented sector	
© 2011 FutureCamp Climate GmbH		

Relevant issues and their appraisal in rice cultivation (II)

Issue	Relevance in rice cultivation method	
Level of aggregation	Aggregation along the key "methane influencing factors" \rightarrow might imply a set of e.g. BL EFs or focus on most important baseline cultivation practice	
Data quality, availability, collection and confidentiality	 Some data available, mostly from scientific work and UNFCCC reporting Relevant effort necessary to improve data base 	
Financing of development	 Funds from developed country financing available? When project participants contribute (e.g. measurements), provide for incentives: E.g. fast approval, retroactive crediting Simple revision of monitoring plan as soon as a "standard factor" is established 	
Accounting for developments over time	Necessary in all scopes	

Climate GmbH

Contact

Felix Nickel

FutureCamp Climate GmbH Aschauer Str. 30 81549 Munich, Germany Phone +49 (89) 45 22 67 0 Fax +49 (89) 45 22 67 11 felix.nickel@future-camp.de www.futurecamp-climate.de

