

CDM - Executive Board

EB 61 Report Annex 11 Page 1

Methodological tool

"Tool to determine the mass flow of a greenhouse gas in a gaseous stream"

(Version 02.0.0)

I. DEFINITIONS, SCOPE, APPLICABILITY AND PARAMETERS

Definitions

For the purpose of this tool, the following definitions apply:

Absolute humidity. Is the ratio between the mass of H₂O (vapor phase) in the gas and the mass of the dry gas.

Dry basis. A parameter that does not account for the H₂O present in the gas.

Gaseous stream. A mixture of gaseous components which may contain different fractions of N_2 , CO_2 , O_2 , CO, H_2 , CH_4 , N_2O , NO, NO_2 , SO_2 , SF_6 , PFCs and H_2O in the vapor phase and its absolute pressure must be below 10 atm or 1.013 MPa. Other gases may be present (e.g. hydrocarbons) provided their total concentration represents less than 1% (v/v) of the total. A dry gas or dry gaseous stream excludes the H_2O fraction and a wet gas or wet gaseous stream includes the H_2O fraction.

Moisture content. The H_2O concentration in mass of H_2O (vapor phase) per volume of dry gas at normal conditions, also referred to as NPT conditions, expressed in mg H_2O/m^3 dry gas.

Normal conditions. As 0°C (273.15 K, 32°F) and 1 atm (101.325 kN/m², 101.325 kPa, 14.69 psia, 29.92 in Hg, 760 torr).

Relative humidity. The ratio between the partial pressure of H_2O in the gas and the saturation pressure at a given temperature.

Saturation (absolute) humidity. The maximum amount of H₂O (vapor phase) that the gas can contain at a given temperature and pressure, expressed as mass of H₂O per mass of the dry gas.

Wet basis. A parameter that accounts for the H₂O present in the gas.

This condition is required because it is assumed in the calculations that the gas stream behaves as an ideal binary mixture of water vapor and an ideal gas. If the gaseous stream contains larger fractions of other gases, such as hydrocarbons other than methane or HFCs, the gas cannot be considered to be an ideal gas mixture. Moderate pressures will assure that gases behave as ideal gases.

² For the cases of landfill gas and exhaust gases from thermal oxidation using natural gas, it will be assumed that the total concentration of other gases represents less than 1% (v/v).

CDM - Executive Board

EB 61 Report Annex 11 Page 2

Scope and applicability

This tool provides procedures to determine the following parameter:

Parameter	SI Unit	Description
$F_{i,t}$	kg/h	Mass flow of greenhouse gas i (CO ₂ , CH ₄ , N ₂ O, SF ₆ or a PFC) in the
		gaseous stream in time interval t

The mass flow of a particular greenhouse gas is calculated based on measurements of: (a) the total volume flow or mass flow of the gas stream, (b) the volumetric fraction of the gas in the gas stream and (c) the gas composition and water content. The flow and volumetric fraction may be measured on a **dry basis or wet basis**. The tool covers the possible measurement combinations, providing six different calculation options to determine the mass flow of a particular greenhouse gas (Options A to F shown in Table 1).

Typical applications of this tool are methodologies where the flow and composition of residual or flared gases or exhaust gases are measured for the determination of baseline or project emissions.

Methodologies where CO₂ is the particular and only gas of interest should continue to adopt material balances as the means of flow determination and may not adopt this tool as material balances are the cost effective way of monitoring flow of CO₂.

The underlying methodology should specify:

- (a) The gaseous stream the tool should be applied to,
- (b) For which greenhouse gases the mass flow should be determined,
- (c) In which time intervals the flow of the gaseous stream should be measured, and
- (d) Situations where the simplification offered for calculating the molecular mass of the gaseous stream (equations (3) or (17)) is not valid (such as the gaseous stream is predominantly composed of a gas other than N_2).

II. PROCEDURE

The mass flow of a greenhouse gas i in a gaseous stream ($F_{i,t}$) is determined through measurement of the flow and volumetric fraction of the gaseous stream. Table 1 shows the different ways to make these measurements and the corresponding calculation option for $F_{i,t}$.

Project participants should document in the CDM-PDD which option is applied. $F_{i,t}$ should be calculated following the steps/guidance described for each option below.

CDM - Executive Board

EB 61 Report Annex 11 Page 3

Table 1: Measurement options

Option	Flow of gaseous stream	Volumetric fraction
A	Volume flow – dry basis	dry or wet basis ³
В	Volume flow – wet basis	dry basis
С	Volume flow – wet basis	wet basis
D	Mass flow – dry basis	dry or wet basis
Е	Mass flow – wet basis	dry basis
F	Mass flow – wet basis	wet basis

Determination of the absolute humidity of the gaseous stream

The absolute humidity is a parameter required for Options B and E. It can be determined from measurement of the moisture content (Option 1), or by assuming the gaseous stream is dry or saturated in a simplified conservative approach (Option 2). Project participants should document in the CDM-PDD which option they apply.

Option 1: Calculation using measurement of the moisture content

This option provides a procedure to determine the absolute humidity of the gaseous stream ($m_{H2O,t,db}$) from measurements of the moisture content of the gas, according to equation (1).

$$m_{H2O,t,db} = \frac{C_{H2O,t,db,n}}{10^6 * \rho_{t,db,n}}$$
 (1)

Where:

 $m_{H2O,t,db}$ Absolute humidity of the gaseous stream in time interval t on a dry basis

= $(kg H_2O/kg dry gas)$

 $C_{H2O,t,db,n}$ = Moisture content of the gaseous stream in time interval t on a dry basis at normal

conditions (mg H₂O/m³ dry gas)

 $\rho_{t,db,n}$ = Density of the gaseous stream in time interval t on a dry basis at normal conditions

(kg dry gas/m³ dry gas)

The density of the gaseous stream on a dry basis at normal conditions $(\rho_{t,db,n})$ is determined as follows:

$$\rho_{t,db,n} = \frac{P_n * MM_{t,db}}{R_n * T_n}$$
(2)

_

Flow measurement on a dry basis is not feasible at reasonable costs for a wet gaseous stream, so there will be no difference in the readings for volumetric fraction in wet basis analyzers and dry basis analyzers and both types can be used indistinctly for calculation Options A and D.

CDM - Executive Board

EB 61 Report Annex 11 Page 4

Where:

 $\rho_{t,db,n}$ = Density of the gaseous stream in time interval t on a dry basis at normal conditions

(kg dry gas/m³ dry gas)

P_n = Absolute pressure at normal conditions (Pa) T_n = Temperature at normal conditions (K)

 $MM_{t,db}$ = Molecular mass of the gaseous stream in a time interval t on a dry basis

(kg dry gas/kmol dry gas)

 R_{ij} = Universal ideal gases constant (Pa.m³/kmol.K)

The molecular mass of the gaseous stream (MM_{t,db}) is estimated as follows:

$$MM_{t,db} = \sum_{k} (v_{k,t,db} * MM_k)$$
(3)

Where:

 $MM_{t,db}$ = Molecular mass of the gaseous stream in time interval t on a dry basis

(kg dry gas/kmol dry gas)

 $v_{k,t,db}$ = Volumetric fraction of gas k in the gaseous stream in time interval t on a dry basis

(m³ gas k/m³ dry gas)

 MM_k = Molecular mass of gas k (kg/kmol)

k = All gases, except H_2O , contained in the gaseous stream (e.g. N_2 , CO_2 , O_2 , O_2 , O_3 , O_4 , O_4 , O_5

 $CH_4,\,N_2O,\,NO,\,NO2,\,SO_2,\,SF_6$ and PFCs). See available simplification below

The determination of the molecular mass of the gaseous stream $(MM_{t,db})$ requires measuring the volumetric fraction of all gases (k) in the gaseous stream. However as a simplification, the volumetric fraction of only the gases k that are greenhouse gases and are considered in the emission reduction calculation in the underlying methodology must be monitored and the difference to 100% may be considered as pure nitrogen. The simplification is not acceptable if it is differently specified in the underlying methodology.

Option 2: Simplified calculation without measurement of the moisture content

This option provides a simple and conservative approach to determine the absolute humidity by assuming the gaseous stream is dry or saturated depending on which is the conservative situation.⁴

If it is conservative to assume that the gaseous stream is dry, then $m_{H2O,t,db}$ is assumed to equal 0. If it is conservative to assume that the gaseous stream is saturated, then $m_{H2O,t,db}$ is assumed to equal the saturation absolute humidity ($m_{H2O,t,db,sat}$) and calculated using equation (4).

$$m_{H2O,t,db,Sat} = \frac{p_{H2O,t,Sat} * MM_{H2O}}{(P_t - p_{H2O,t,Sat}) * MM_{t,db}}$$
(4)

⁴ An assumption that the gaseous stream is saturated is conservative for the situation that the mass flow of greenhouse gas *i* is underestimated (applicable for calculating baseline emissions). Conversely, an assumption that the gas stream is dry is conservative for the situation that the greenhouse gas *i* is overestimated (applicable for calculating project emissions).

CDM - Executive Board

EB 61 Report Annex 11 Page 5

Where:

 $m_{H2O,t,db,sat}$ = Saturation absolute humidity in time interval t on a dry basis (kg H₂O/kg dry gas)

 $p_{H20,t,Sat}$ = Saturation pressure of H_2O at temperature T_t in time interval t (Pa) T_t = Temperature of the gaseous stream in time interval t (K) P_t = Absolute pressure of the gaseous stream in time interval t (Pa)

 MM_{H2O} = Molecular mass of H_2O (kg H_2O /kmol H_2O)

 $MM_{t,db}$ = Molecular mass of the gaseous stream in a time interval t on a dry basis

(kg dry gas/kmol dry gas)

Parameter $MM_{t,db}$ is estimated using equation (3).

Option A

Flow measurement on a dry basis is not doable for a wet gaseous stream. Therefore, it is necessary to demonstrate that the gaseous stream is dry to use this option. There are two ways to do this:

- (a) Measure the moisture content of the gaseous stream ($C_{H2O,t,db,n}$) and demonstrate that this is less or equal to 0.05 kg H_2O/m^3 dry gas; or
- (b) Demonstrate that the temperature of the gaseous stream (T_t) is less than 60° C (333.15 K) at the flow measurement point.

If it cannot be demonstrated that the gaseous stream is dry, then the flow measurement should be assumed to be on a wet basis and the corresponding option from Table 1 should be applied instead.

The mass flow of greenhouse gas $i(F_{i,t})$ is determined as follows:

$$F_{i,t} = V_{t,db} * V_{i,t,db} * \rho_{i,t}$$
(5)

With

$$\rho_{i,t} = \frac{P_t * MM_i}{R_u * T_t}$$
(6)

Where:

 $F_{i,t}$ = Mass flow of greenhouse gas i in the gaseous stream in time interval t (kg gas/h) $V_{t,db}$ = Volumetric flow of the gaseous stream in time interval t on a dry basis (m³ dry gas/h) $V_{i,t,db}$ = Volumetric fraction of greenhouse gas i in the gaseous stream in a time interval t on a dry basis (m³ gas i/m³ dry gas)

 $\rho_{i,t}$ = Density of greenhouse gas *i* in the gaseous stream in time interval *t* (kg gas *i*/m³ gas *i*)

 P_t = Absolute pressure of the gaseous stream in time interval t (Pa)

 MM_i = Molecular mass of greenhouse gas i (kg/kmol) R_u = Universal ideal gases constant (Pa.m³/kmol.K)

 T_t = Temperature of the gaseous stream in time interval t(K)

Executive Board

UNFCCC/CCNUC

UNFCCC

EB 61 Report Annex 11 Page 6

Option B

The mass flow of greenhouse gas i ($F_{i,t}$) is determined using equations (5) and (6). The volumetric flow of the gaseous stream in time interval t on a dry basis ($V_{t,db}$) is determined by converting the measured volumetric flow from wet basis to dry basis as follows:

$$V_{t,tb} = V_{t,wb}/(1 + V_{H2O,t,db})$$
 (7)

Where:

 $V_{t,db}$ = Volumetric flow of the gaseous stream in time interval t on a dry basis (m³ dry gas/h) $V_{t,wb}$ = Volumetric flow of the gaseous stream in time interval t on a wet basis (m³ wet gas/h) $V_{H2O,t,db}$ = Volumetric fraction of H_2O in the gaseous stream in time interval t on a dry basis (m³ $H_2O/m³$ dry gas)

The volumetric fraction of H_2O in time interval t on a dry basis ($v_{H2O,t,db}$) is estimated according to equation (8).

$$v_{\rm H2O,t,db} = \frac{m_{\rm H2O,t,db} * MM_{\rm t,db}}{MM_{\rm H2O}}$$
 (8)

Where:

 $v_{H2O,t,db}$ = Volumetric fraction of H_2O in the gaseous stream in time interval t on a dry basis

(m³ H₂O/m³ dry gas)

 $m_{H2O,t,db}$ = Absolute humidity in the gaseous stream in time interval t on a dry basis

(kg H₂O/kg dry gas)

 $MM_{t,db}$ = Molecular mass of the gaseous stream in time interval t on a dry basis

(kg dry gas/kmol dry gas)

 MM_{H2O} = Molecular mass of H_2O (kg H_2O /kmol H_2O)

The absolute humidity of the gaseous stream ($m_{H2O,t,db}$) is determined using either Option 1 or 2 specified in the Determination of the absolute humidity of the gaseous stream section of the tool and the molecular mass of the gaseous stream ($MM_{t,db}$) is determined using equation (3).

Option C

The mass flow of greenhouse gas $i(F_{i,t})$ is determined as follows:

$$F_{i,t} = V_{t,wb,n} * V_{i,t,wb} * \rho_{i,n}$$

$$\tag{9}$$

with

$$\rho_{i,n} = \frac{P_n * MM_i}{R_n * T_n}$$
 (10)

Executive Board

UNFCCC

EB 61 Report Annex 11 Page 7

Where:

 F_{it} = Mass flow of greenhouse gas i in the gaseous stream in time interval t (kg gas/h) $V_{t,wb,\,n}$ = Volumetric flow of the gaseous stream in time interval t on a wet basis at normal conditions (m³ wet gas/h)

= Volumetric fraction of greenhouse gas i in the gaseous stream in time interval t on a $V_{i,t,wb}$

wet basis (m^3 gas i/m^3 wet gas)

= Density of greenhouse gas i in the gaseous stream at normal conditions (kg gas i/m^3 $\rho_{i,n}$

wet gas i)

= Absolute pressure at normal conditions (Pa) P_n = Temperature at normal conditions (K) T_n

 MM_{i} = Molecular mass of greenhouse gas i (kg/kmol) = Universal ideal gases constant (Pa.m³/kmol.K) $R_{\rm n}$

The following equation should be used to convert the volumetric flow of the gaseous stream from actual conditions to normal conditions of temperature and pressure:

$$V_{t,wh,n} = V_{t,wh} * [(T_n/T_t) * (P_t/P_n)]$$
(11)

Where:

 $V_{t,wb,n}$ = Volumetric flow of the gaseous stream in a time interval t on a wet basis at normal

conditions (m³ wet gas/h)

 $V_{t,wb} \\$ = Volumetric flow of the gaseous stream in time interval t on a wet basis (m³ wet gas/h)

= Pressure of the gaseous stream in time interval t (Pa) T_t = Temperature of the gaseous stream in time interval t(K)

= Absolute pressure at normal conditions (Pa) P_n = Temperature at normal conditions (K)

Option D

Flow measurement on a dry basis is not doable for a wet gaseous stream. Therefore, it is necessary to demonstrate that the gaseous stream is dry to use this option. There are two ways to do this:

- Measure the moisture content of the gaseous stream (C_{H2O,t,db,n}) and demonstrate that this is less or equal to 0.05 kg H₂O/m³ dry gas; or
- Demonstrate that the temperature of the gaseous stream (T_1) is less than 60° C (333.15 K)d at the flow measurement point.

If it cannot be demonstrated that the gaseous stream is dry, then the flow measurement should be assumed to be on a wet basis and the corresponding option from Table 1 should be applied instead.

The mass flow of greenhouse gas $i(F_{i,t})$ is determined using equations (5) and (6). The volumetric flow of the gaseous stream in time interval t on a dry basis ($V_{t,db}$) is determined by converting the mass flow of the gaseous stream to a volumetric flow as follows:

CDM - Executive Board

EB 61 Report Annex 11 Page 8

$$V_{t,db} = M_{t,db}/\rho_{t,db}$$
 (12)

Where:

 $V_{t,db}$ = Volumetric flow of the gaseous stream in time interval t on a dry basis (m³ dry gas/h)

 $M_{t,db}$ = Mass flow of the gaseous stream in time interval t on a dry basis (kg/h)

 $\rho_{t,db}$ = Density of the gaseous stream in time interval t on a dry basis (kg dry gas/m³ dry gas)

The density of the gaseous stream ($\rho_{t,db}$) should be determined as follows:

$$\rho_{t,db} = \frac{P_t * MM_{t,db}}{R_u * T_t}$$
(13)

Where:

 $\rho_{t,db}$ = Density of the gaseous stream in a time interval t on a dry basis (kg dry gas/m³ dry gas)

 $MM_{t,db}$ = Molecular mass of the gaseous stream in a time interval t on a dry basis

(kg dry gas/kmol dry gas)

 P_t = Pressure of the gaseous stream in time interval t (Pa) T_t = Temperature of the gaseous stream in time interval t (K)

The molecular mass of the gaseous stream $(MM_{t,db})$ is estimated using equation (3).

Option E

The mass flow of greenhouse gas i ($F_{i,t}$) is determined using equations (5) and (6). The volumetric flow of the gaseous stream in time interval t on a dry basis ($V_{t,db}$) is determined in two steps. First the mass flow of the gaseous stream in time interval t on a wet basis ($M_{t,wb}$) is converted from wet basis to dry basis as follows:

$$M_{t,db} = M_{t,wb} / (1 + m_{H2O,t,db})$$
 (14)

Where:

 $M_{t,db}$ = Mass flow of the gaseous stream in time interval t on a dry basis (kg/h) $M_{t,wb}$ = Mass flow of the gaseous stream in time interval t on a wet basis (kg/h)

 $m_{H2O,t,db}$ = Absolute humidity of H_2O in the gaseous stream in a time interval t on a dry basis

(kg H₂O/kg dry gas)

Then, the mass flow of the gaseous stream in time interval t on a dry basis $(M_{t,db})$ is converted to the volumetric flow of the gaseous stream in time interval t on a dry basis $(V_{t,db})$ using equation (12).

The absolute humidity of the gaseous stream ($m_{H2O,t,db}$) is determined using either Option 1 or 2 specified in the "Determination of the absolute humidity of the gaseous stream" section of the tool.

UNFCCC/CCN

UNFCCC

EB 61 Report Annex 11 Page 9

Option F

Executive Board

The mass flow of greenhouse gas i ($F_{i,t}$) is determined using equations (9), (10), and the following equations:

$$V_{t,wb,n} = M_{t,wb}/\rho_{t,wb,n}$$
 (15)

and

$$\rho_{t,wb,n} = \frac{P_n * MM_{t,wb}}{R_u * T_n}$$
(16)

Where:

 $V_{t,wb,n}$ = Volumetric flow of the gaseous stream in time interval t at normal conditions on a

wet basis (m³ wet gas/h)

 $v_{i,t,wb}$ = Volumetric fraction of greenhouse gas i in the gaseous stream in time interval t on a

wet basis (m³ gas i/m³ wet gas)

 $M_{t,wb}$ = Mass flow of the gaseous stream in time interval t on a wet basis (kg/h)

 $\rho_{t,wb,n}$ = Density of the gaseous stream in time interval t on a wet basis at normal conditions

(kg wet gas/m³ wet gas)

 P_n = Absolute pressure at normal conditions (Pa)

 T_n = Temperature at normal conditions (K)

 $MM_{t,wb}$ = Molecular mass of the gaseous stream in time interval t on a wet basis

(kg wet gas/kmol wet gas)

R_u = Universal ideal gases constant (Pa.m³/kmol.K)

The molecular mass of the gaseous stream (MM_{t,wb}) is determined as follows:

$$MM_{t,wb} = \sum_{k} (v_{k,t,wb} * MM_k)$$
 (17)

Where:

 $MM_{t,wb}$ = Molecular mass of the gaseous stream in time interval t on a wet basis

(kg wet gas/kmol wet gas)

 $V_{k,t,wb}$ = Volumetric fraction of gas k in the gaseous stream in time interval t on a wet basis

 $(m^3 gas k/m^3 wet gas)$

 MM_k = Molecular mass of gas k (kg/kmol)

k = All gases contained in the gaseous stream (e.g. N₂, CO₂, O₂, CO, H₂, CH₄, N₂O,

NO, NO₂, SO₂, SF₆ and PFCs and H₂O in vapor phase). See available

simplification below

The determination of the molecular mass of the gaseous stream $(MM_{t,wb})$ requires measuring the volumetric fraction of all gases (k) in the gaseous stream. However as a simplification, the volumetric fraction of only the gases k that are greenhouse gases and are considered in the emission reduction calculation in the underlying methodology must be monitored and the difference to 100% may be

CDM - Executive Board

EB 61 Report Annex 11 Page 10

considered as pure nitrogen. The simplification is not acceptable if it is differently specified in the underlying methodology.

Data and parameters not monitored

Data / Parameter:	R_{u}
Data unit:	Pa.m ³ /kmol.K
Description:	Universal ideal gases constant
Value to be	8,314
applied:	
Any comment:	

Data / Parameter:	MM_i			
Data unit:	kg/kmol			
Description:	Molecular mass of greenhouse gas i			
Value to be applied:	Compound	Structure	Molecular mass (kg / kmol)	
	Carbon dioxide	CO_2	44.01	
	Methane	CH ₄	16.04	
	Nitrous oxide	N ₂ O	44.02	
	Sulfur hexafluoride	SF_6	146.06	
	Perfluoromethane	CF ₄	88.00	
	Perfluoroethane	C_2F_6	138.01	
	Perfluoropropane	C_3F_8	188.02	
	Perfluorobutane	C_4F_{10}	238.03	
	Perfluorocyclobutane	c-C ₄ F ₈	200.03	
	Perfluoropentane	C_5F_{12}	288.03	
	Perfluorohexane	$C_{6}F_{14}$	338.04	
Any comment:		_		

CDM - Executive Board

Data / Parameter:	MM_k			
Data unit:	kg/kmol			
Description:	Molecular mass of gas k			
Value to be	For gases k that are greenhou	ise gases app	y values for MM _i .	
applied:	Compound	Structure	Molecular mass	
	Compound	Structure	(kg / kmol)	
	Nitrogen	N_2	28.01	
	Oxygen	O_2	32.00	
	Carbon monoxide	CO	28.01	
	Hydrogen	H_2	2.02	
	Nitric oxide	NO	30.01	
	Nitrogen dioxide	NO ₂	46.01	
	Sulfur dioxide	SO ₂	64.06	
Any comment:				

Data / Parameter:	$\mathrm{MM}_{\mathrm{H2O}}$
Data unit:	kg/kmol
Description:	Molecular mass of water
Value to be	18.0152 kg/kmol
applied:	
Any comment:	

Data / Parameter:	P_n
Data unit:	Pa
Description:	Total pressure at normal conditions
Value to be	101,325 Pa
applied:	
Any comment:	

Data / Parameter:	T _n
Data unit:	K
Description:	Temperature at normal conditions
Value to be	273.15 K
applied:	
Any comment:	

CDM - Executive Board

EB 61 Report Annex 11 Page 12

III. MONITORING METHODOLOGY PROCEDURE

Data and parameters to be monitored

All monitored data must be linked in time, i.e. calculations shall be performed considering only a set of data acquired in the same time interval. As noted above, project participants may use an hour or a smaller discrete time interval.

Data / Parameter:	$V_{t,wb}$
Data unit:	m³ wet gas/h
Description:	Volumetric flow of the gaseous stream in time interval <i>t</i> on a wet basis
Source of data:	
Measurement	Volumetric flow measurement should always refer to the actual pressure and
procedures (if any):	temperature. Instruments with recordable electronic signal (analogical or digital)
	are required
Monitoring	Continuous if not specified in the underlying methodology
frequency:	
QA/QC procedures:	Periodic calibration against a primary device provided by an independent
	accredited laboratory is mandatory. Calibration and frequency of calibration is
	according to manufacturer's specifications
Any comment:	This parameter will be monitored in Options B and C

Data / Parameter:	$V_{t,db}$
Data unit:	m³ dry gas/h
Description:	Volumetric flow of the gaseous stream in time interval <i>t</i> on a dry basis
Source of data:	
Measurement	Volumetric flow measurement should always refer to the actual pressure and
procedures (if any):	temperature. Calculated based on the wet basis flow measurement plus water
	concentration measurement
Monitoring	Continuous if not specified in the underlying methodology
frequency:	
QA/QC procedures:	Periodic calibration against a primary device provided by an independent
	accredited laboratory is mandatory. Calibration and frequency of calibration is
	according to manufacturer's specifications
Any comment:	This parameter will be monitored in Options A

Data / Parameter:	$V_{i,t,db}$
Data unit:	m³ gas i/m³ dry gas
Description:	Volumetric fraction of greenhouse gas <i>i</i> in a time interval <i>t</i> on a dry basis
Source of data:	
Measurement	Continuous gas analyser operating in dry-basis. Volumetric flow measurement
procedures (if any):	should always refer to the actual pressure and temperature

U

CDM - Executive Board

UNFCCC/CCNUCC

Monitoring	Continuous if not specified in the underlying methodology
frequency:	
QA/QC procedures:	Calibration should include zero verification with an inert gas (e.g. N ₂) and at least
	one reading verification with a standard gas (single calibration gas or mixture
	calibration gas). All calibration gases must have a certificate provided by the
	manufacturer and must be under their validity period
Any comment:	This parameter will be monitored in Options B and E and may be monitored in
	Options A and D

Data / Parameter:	$V_{i,t,wb}$		
Data unit:	m³ gas i/m³ wet gas		
Description:	Volumetric fraction of greenhouse gas <i>i</i> in a time interval <i>t</i> on a wet basis		
Source of data:			
Measurement procedures (if any):	Calculated based on the dry basis analysis plus water concentration measurement or continuous in-situ analyzers if not specified in the underlying methodology		
Monitoring frequency:	Continuous if not specified in the underlying methodology		
QA/QC procedures:	Calibration should include zero verification with an inert gas (e.g. N ₂) and at least one reading verification with a standard gas (single calibration gas or mixture calibration gas). All calibration gases must have a certificate provided by the manufacturer and must be under their validity period		
Any comment: This parameter will be monitored in Options C and F and may be monitore Options A and D			

Data / Parameter:	$M_{t,wb}$		
Data unit:	kg/h		
Description:	Mass flow of the gaseous stream in time interval <i>t</i> on a wet basis		
Source of data:			
Measurement	Instruments with recordable electronic signal (analogical or digital) are required		
procedures (if any):			
Monitoring	Continuous if not specified in the underlying methodology		
frequency:			
QA/QC procedures:	Periodic calibration against a primary device provided by an independent		
	accredited laboratory is mandatory. Calibration and frequency of calibration is		
	according to manufacturer's specifications		
Any comment:	This parameter will be monitored in Options E and F		

Data / Parameter:	$M_{t,db}$	
Data unit:	kg/h	
Description:	Mass flow of the gaseous stream in time interval <i>t</i> on a dry basis	
Source of data:		
Measurement	Calculated based on the wet basis flow measurement plus water concentration	
procedures (if any):	measurement	

CDM - Executive Board

Monitoring frequency:	Continuous if not specified in the underlying methodology	
QA/QC procedures:	: Calibration and frequency of calibration is according to manufacturer's	
	specifications	
Any comment:	This parameter will be monitored in Option D	

Data / Parameter:	$C_{H2O,t,db,n,}$		
Data unit:	mg H ₂ O/m ³ dry gas		
Description:	Moisture content of the gaseous stream at normal conditions, in time interval t		
Source of data:	Measurements according to the USEPA CF42 method 4 – Gravimetric		
	determination of water content		
Measurement	Discrete measurement procedure		
procedures (if any):	fany):		
Monitoring	The mean value among three consecutive measurements performed in the same		
frequency:	day (at least 2 hours each) shall be considered. Measurements should coincide		
	with the Annual Surveillance Test (associated with requirements of the EN 14181		
	standard) or the calibration of the flow meter for the gaseous stream		
QA/QC procedures:	According to the USEPA CF42 method 4		
Any comment:	Monitoring is required if Option 1 described in the "Determination of the		
absolute humidity of the gaseous stream" section of the tool is applied			
	of the ways of proving that the gaseous stream is dry (necessary for Options A or		
	D)		

Data / Parameter:	$T_{\rm t}$		
Data unit:	K		
Description:	Temperature of the gaseous stream in time interval <i>t</i>		
Source of data:			
Measurement	Instruments with recordable electronic signal (analogical or digital) are required.		
procedures (if any):	Examples include thermocouples, thermo resistance, etc		
Monitoring	Continuous unless differently specified in the underlying methodology		
frequency:			
QA/QC procedures:	Periodic calibration against a primary device provided by an independent		
	accredited laboratory is mandatory. Calibration and frequency of calibration is		
	according to manufacturer's specifications		
Any comment:	Provided all parameters are converted to normal conditions during the monitoring		
	process, this parameter may not be needed except for moisture content		
	determination and therefore it should be metered only when performing such		
	measurements (with same frequency). However, if the applicability condition		
	related to the gaseous stream flow temperature being below 60°C is adopted, this		
	parameter must be monitored continuously to assure the applicability condition is		
	met		

CDM - Executive Board

Data / Parameter:	P_{t}	
Data unit:	Pa	
Description:	Pressure of the gaseous stream in time interval <i>t</i>	
Source of data:		
Measurement	Instruments with recordable electronic signal (analogical or digital) are required.	
procedures (if any):	Examples include pressure transducers, etc	
Monitoring	Continuous unless differently specified in the underlying methodology	
frequency:		
QA/QC procedures:	Periodic calibration against a primary device must be performed periodically and	
	records of calibration procedures must be kept available as well as the primary	
	device and its calibration certificate. Pressure transducers (either capacitive or	
	resistive) must be calibrated monthly	
Any comment:	1	
	process, this parameter may not be needed except for moisture content	
	determination and therefore it should be metered only when performing such	
	measurements (with same frequency)	

Data / Parameter:	p _{H20,t,Sat}	
Data unit:	Pa	
Description:	Saturation pressure of H_2O at temperature T_t in time interval t	
Source of data:		
Measurement	This parameter is solely a function of the gaseous stream temperature T _t and can	
procedures (if any):	any): be found at reference [1] for a total pressure equal to 101,325 Pa	
Monitoring		
frequency:		
QA/QC procedures:		
Any comment:	[1] Fundamentals of Classical Thermodynamics; Gordon J. Van Wylen, Richard	
	E. Sonntag and Borgnakke; 4° Edition 1994, John Wiley & Sons, Inc.	

Data / Parameter:	$V_{k,t,db}$		
Data unit:	m³ gas k/m³ dry gas		
Description:	Volumetric fraction of gas k in the gaseous stream in time interval t on a dry basis		
Source of data:			
Measurement	Continuous gas analyser operating in dry-basis		
procedures (if any):			
Monitoring	Continuous if not specified in the underlying methodology		
frequency:			
QA/QC procedures:	Calibration should include zero verification with an inert gas (e.g. N ₂) and at least		
	one reading verification with a standard gas (single calibration gas or mixture		
	calibration gas). All calibration gases must have a certificate provided by the		
manufacturer and must be under their validity period			
Any comment:			

CDM - Executive Board

EB 61 Report Annex 11 Page 16

Data / Parameter:	$V_{k,t,wb}$	
Data unit:	m³ gas k/m³ wet gas	
Description:	Volumetric fraction of gas k in the gaseous stream in time interval t on a wet	
	basis	
Source of data:		
Measurement	Calculated based on the dry basis analysis plus water concentration measurement	
procedures (if any):	or continuous in-situ analyzers if not specified in the underlying methodology	
Monitoring	Continuous if not specified in the underlying methodology	
frequency:		
QA/QC procedures:	Calibration should include zero verification with an inert gas (e.g. N ₂) and at least one reading verification with a standard gas (single calibration gas or mixture calibration gas). All calibration gases must have a certificate provided by the manufacturer and must be under their validity period	
Any comment:		

IV. REFERENCES

Business Function: Methodology

[1] Fundamentals of Classical Thermodynamics; Gordon J. Van Wylen, Richard E. Sonntag and Borgnakke; 4° Edition 1994, John Wiley & Sons, Inc.

[2] Drying: Principles, Applications and Design; Czeslaw Strumillo and Tadeusz Kudra; 1986; Gordon & Breach Science Publisher; Montreaux, Switzerland.

History of the document

Version	Date	Nature of revision(s)
02.0.0	EB 61, Annex 11 3 June 2011	Revision to: Corrects inconsistencies in the expression of some parameters; Provides a more simple option to demonstrate that the gaseous stream is dry based on showing that the temperature of the gaseous stream does not exceed 60°C, and changing the threshold for moisture content for a dry gaseous stream to be equal to or less than 0.05 kg H ₂ O/m³ dry gas; States that only the volumetric fraction of greenhouse gases being considered in the emission calculation of the underlying methodology must be monitored for determining the molecular mass of the gaseous stream; Changes the frequency that the moisture content must be monitored to coincide with calibration of the flow meter, or the time of the Annual Surveillance Test associated with the EN 14181; Editorial changes to improve the tool's structure, incorporate additional cross-referencing and remove repeated text.
01	EB 47, Annex 10 28 May 2009	Initial adoption.
	Decision Class: Regulatory Document Type: Tool	