Methodological tool

“Project emissions from flaring”

(Version 02.0.0)

I. DEFINITIONS, SCOPE, APPLICABILITY AND PARAMETERS

Definitions

For the purpose of this tool, the following definitions apply:

Auxiliary fuel. Additional fuel added to the residual gas to increase the calorific value to the point where the mixture will sustain continuous combustion. Auxiliary fuel where needed is normally propane supplied from cylinders of gas or methane from a gas main.

Enclosed flare. Devices where the residual gas is burned in a vertical cylindrical or rectilinear enclosure, where the flame enclosure is more than 2 times the diameter of the enclosure. The device includes a burning system and a damper where air for the combustion reaction is admitted.

Exhaust gas (EG). Gas emitted from the flare, following the flaring of residual gas as part of the project activity.

Flare efficiency. Methane destruction efficiency of the flare, defined as one minus the ratio between the mass flow of methane in the exhaust gas and the mass flow of methane in residual gas to be flared (both referred to in dry basis and reference conditions).

Flare specification. The manufacturer’s design specification of the flare, which includes: the minimum and maximum flow rate and/or heat flux; the minimum and maximum operating temperature; and the location(s) of temperature sensors.

Low height flare. An enclosed flare for which the flame enclosure has a height between 10 and two times the diameter of the enclosure.

Maintenance schedule. The flare manufacturer’s specification for the schedule of routine maintenance that is required to maintain the flare in good working order. This is typically expressed as the desirable time between maintenance events.

Manufacturer. The original manufacturer of the flare, or its authorized agent for undertaking the manufacture of the flare.

Open flare. Device where the residual gas is burned in an open air tip with or without any auxiliary fluid assistance or a flare with a vertical cylindrical or rectilinear enclosure, for which the flame enclosure is less than 2 times the diameter of the enclosure.

Reference conditions. Reference conditions are defined as 0°C (273.15 K, 32°F) and 1 atm (101.325 kN/m², 101.325 kPa, 14.69 psia, 29.92 in Hg, 760 torr).

Residual gas (RG). Gas containing methane that is to be flared as part of the project activity.

Residual gas component. Chemical molecules composing the residual gas (CH₄, CO, CO₂, O₂, H₂, H₂S, NH₃, N₂).
Scope and applicability

This tool provides procedures to calculate project emissions from flaring of a residual gas. The tool is applicable to enclosed or open flares and project participants should document in the CDM-PDD the type of flare used in the project activity.

This tool is applicable to the flaring of flammable greenhouse gases where:

- Methane is the component with the highest concentration in the flammable residual gas; and
- The source of the residual gas is coal mine methane or a gas from a biogenic source (e.g. biogas, landfill gas or wastewater treatment gas).

The tool is not applicable to the use of auxiliary fuels and therefore the residual gas must have sufficient flammable gas present to sustain combustion. For the case of an enclosed flare, there shall be operating specifications provided by the manufacturer of the flare.

This methodology refers to the latest approved version of the “Tool to determine the mass flow of a greenhouse gas in a gaseous stream”. The applicability conditions of this tool also apply.

Parameters

This tool provides procedures to determine the following parameter:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SI Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE_{flare,y}</td>
<td>t CO\textsubscript{2}e</td>
<td>Project emissions from flaring of the residual gas in year y</td>
</tr>
</tbody>
</table>

II. BASELINE METHODOLOGY PROCEDURE

The calculation procedure in this tool determines the project emissions from flaring the residual gas ($PE_{flare,y}$) based on the flare efficiency ($\eta_{flare,m}$) and the mass flow of methane to the flare ($F_{CH4,RG,m}$). The flare efficiency is determined for each minute m of year y based either on monitored data or default values.

The project emissions calculation procedure is given in the following steps:

STEP 1: Determination of the methane mass flow of the residual gas;

STEP 2: Determination of the flare efficiency;

STEP 3: Calculation of project emissions from flaring.

Step 1: Determination of the methane mass flow in the residual gas

The “Tool to determine the mass flow of a greenhouse gas in a gaseous stream” shall be used to determine the following parameter:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SI Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{CH4,m}$</td>
<td>kg</td>
<td>Mass flow of methane in the residual gaseous stream in the minute m</td>
</tr>
</tbody>
</table>
The following requirements apply:

- The gaseous stream tool shall be applied to the residual gas;
- The flow of the gaseous stream shall be measured continuously;
- \(\text{CH}_4 \) is the greenhouse gas for which the mass flow should be determined;
- The simplification offered for calculating the molecular mass of the gaseous stream is valid (equations 3 and 17 in the tool); and
- The time interval \(t \) for which mass flow should be calculated is every minute \(m \).

\(F_{\text{CH}_4,m} \), which is measured as the mass flow during minute \(m \), shall then be used to determine the mass of methane in kilograms fed to the flare in minute \(m \) \((F_{\text{CH}_4,\text{RG},m}) \). \(F_{\text{CH}_4,m} \) shall be determined on a dry basis.

Step 2: Determination of flare efficiency

The flare efficiency depends on the efficiency of combustion in the flare and the time that the flare is operating. For determining the efficiency of combustion of enclosed flares there is the option to apply a default value or determine the efficiency based on monitored data. For open flares a default value must be applied. The time the flare is operating is determined by monitoring the flame using a flame detector and, for the case of enclosed flares, in addition the monitoring requirements provided by the manufacturer’s specifications for operating conditions shall be met.

Open flare

In the case of open flares, the flare efficiency in the minute \(m \) \((\eta_{\text{flare},m}) \) is 50% when the flame is detected in the minute \(m \) \((\text{Flame}_m) \), otherwise \(\eta_{\text{flare},m} \) is 0%.

Enclosed flare

In the case of enclosed flares, project participants may choose between the following two options to determine the flare efficiency for minute \(m \) \((\eta_{\text{flare},m}) \) and shall document in the CDM-PDD which option is selected:

- **Option A:** Apply a default value for flare efficiency.
- **Option B:** Measure the flare efficiency.

For enclosed flares that are defined as low height flares, the flare efficiency in the minute \(m \) \((\eta_{\text{flare},m}) \) shall be adjusted, as a conservative approach, by subtracting 0.1 from the efficiency as determined in Options A or B. For example, the default value applied should be 80%, rather than 90%, and if for example the measured value was 99%, then the value to be used shall correspond to 89%.

Option A: Default value

The flare efficiency for the minute \(m \) \((\eta_{\text{flare},m}) \) is 90% when the following two conditions are met to demonstrate that the flare is operating:

1. The temperature of the flare \((T_{\text{EG},m}) \) and the flow rate of the residual gas to the flare \((F_{\text{RG},m}) \) is within the manufacturer’s specification for the flare \((\text{SPEC}_{\text{flare}}) \) in minute \(m \); and
2. The flame is detected in minute \(m \) \((\text{Flame}_m) \).
Otherwise $\eta_{\text{flare}, m}$ is 0%.

Option B: Measured flare efficiency

The flare efficiency in the minute m is a measured value ($\eta_{\text{flare}, m} = \eta_{\text{flare}, \text{calc}, m}$) when the following three conditions are met to demonstrate that the flare is operating:

1. The temperature of the flare ($T_{\text{EG}, m}$) and the flow rate of the residual gas to the flare ($F_{\text{RG}, m}$) is within the manufacturer’s specification for the flare ($\text{SPEC}_{\text{flare}}$) in minute m;
2. The flame is detected in minute m (Flame_m); and

Otherwise $\eta_{\text{flare}, m}$ is 0%.

In applying Option B, the project participants may choose to determine $\eta_{\text{flare}, \text{calc}, m}$ using either Option B.1 or Option B.2. Under Option B.1 the measurement is conducted by an accredited entity on a biannual basis and under Option B.2 the flare efficiency is measured in each minute.

Option B.1: Biannual measurement of the flare efficiency

The calculated flare efficiency $\eta_{\text{flare}, \text{calc}, m}$ is determined as the average of two measurements of the flare efficiency made in year y ($\eta_{\text{flare}, \text{calc}, y}$), as follows:

$$\eta_{\text{flare}, \text{calc}, y} = 1 - \frac{1}{2} \sum_{t=1}^{2} \left(\frac{F_{\text{CH}_4, \text{EG}, t}}{F_{\text{CH}_4, \text{RG}, t}} \right)$$

(1)

Where:

- $\eta_{\text{flare}, \text{calc}, y}$ = Flare efficiency in the year y
- $F_{\text{CH}_4, \text{EG}, t}$ = Mass flow of methane in the exhaust gas of the flare on a dry basis at reference conditions in the time period t (kg)
- $F_{\text{CH}_4, \text{RG}, t}$ = Mass flow of methane in the residual gas on a dry basis at reference conditions in the time period t (kg)
- t = The two time periods in year y during which the flare efficiency is measured, each a minimum of one hour and separated by at least six months

$F_{\text{CH}_4, \text{EG}, t}$ is measured according to an appropriate national or international standard. $F_{\text{CH}_4, \text{RG}, t}$ is calculated according to Step 1, and consists of the sum of methane flow in the minutes m that make up the time period t.

Option B.2: Measurement of flare efficiency in each minute

The flare efficiency ($\eta_{\text{flare}, \text{calc}, m}$) is determined based on monitoring the methane content in the exhaust gas, the residual gas, and the air used in the combustion process during the minute m in year y, as follows:

$$\eta_{\text{flare}, \text{calc}, m} = 1 - \frac{F_{\text{CH}_4, \text{EG}, m}}{F_{\text{CH}_4, \text{RG}, m}}$$

(2)

Where:

- $\eta_{\text{flare}, \text{calc}, m}$ = Flare efficiency in the minute m
- $F_{\text{CH}_4, \text{EG}, m}$ = Mass flow of methane in the exhaust gas of the flare on a dry basis at reference conditions in the minute m (kg)
- $F_{\text{CH}_4, \text{RG}, m}$ = Mass flow of methane in the residual gas on a dry basis at reference conditions in the minute m (kg)
\(F_{CH4, RG, m} \) is calculated according to Step 1.

Determine \(F_{CH4, EG, m} \) according to Steps 2.1 - 2.4 below:

Step 2.1: Determine the methane mass flow in the exhaust gas on a dry basis

The mass flow of methane in the exhaust gas is determined based on the volumetric flow of the exhaust gas and the measured concentration of methane in the exhaust gas, as follows:

\[
F_{CH4, EG, m} = V_{EG, m} \times f_{CH4, EG, m} \times 10^{-6}
\]
(3)

Where:

- \(F_{CH4, EG, m} \) = Mass flow of methane in the exhaust gas of the flare on a dry basis at reference conditions in the minute \(m \) (kg)
- \(V_{EG, m} \) = Volumetric flow of the exhaust gas of the flare on a dry basis at reference conditions in minute \(m \) (m\(^3\))
- \(f_{CH4, EG, m} \) = Concentration of methane in the exhaust gas of the flare on a dry basis at reference conditions in minute \(m \) (mg/m\(^3\))

Step 2.2: Determine the volumetric flow of the exhaust gas (\(V_{EG, m} \))

Determine the average volume flow of the exhaust gas in minute \(m \) based on a stoichiometric calculation of the combustion process. This depends on the chemical composition of the residual gas, the amount of air supplied to combust it and the composition of the exhaust gas. It is calculated as follows:

\[
V_{EG, m} = Q_{EG, m} \times M_{RG, m}
\]
(4)

Where:

- \(V_{EG, m} \) = Volumetric flow of the exhaust gas on a dry basis at reference conditions in minute \(m \) (m\(^3\))
- \(Q_{EG, m} \) = Volume of the exhaust gas on a dry basis at reference conditions per kilogram of residual gas on a dry basis at reference conditions in minute \(m \) (m\(^3\) exhaust gas/kg residual gas)
- \(M_{RG, m} \) = Mass flow of the residual gas on a dry basis at reference conditions in the minute \(m \) (kg)

Step 2.3: Determine the mass flow of the residual gas (\(M_{RG, m} \))

Project participants may select to monitor the mass flow of the residual gas in minute \(m \) directly (see monitored parameter \(M_{RG, m} \)) or, according to the procedure given in this step, calculate \(M_{RG, m} \) based on the volumetric flow and the density of the residual gas. The density of the residual gas is determined based on the volumetric fraction of all components in the gas.

\[
M_{RG, m} = \rho_{RG, ref, m} \times V_{RG, m}
\]
(5)

Where:

- \(M_{RG, m} \) = Mass flow of the residual gas on a dry basis at reference conditions in minute \(m \) (kg)
- \(\rho_{RG, ref, m} \) = Density of the residual gas at reference conditions in minute \(m \) (kg/m\(^3\))
- \(V_{RG, m} \) = Volumetric flow of the residual gas on a dry basis at reference conditions in the minute \(m \) (m\(^3\))

and
\[\rho_{RG,ref,m} = \frac{P_{ref}}{R_u \times MM_{RG,m} \times T_{ref}} \]

(6)

Where:
- \(\rho_{RG,ref,m} \) = Density of the residual gas at reference conditions in minute \(m \) (kg/m\(^3\))
- \(P_{ref} \) = Atmospheric pressure at reference conditions (Pa)
- \(R_u \) = Universal ideal gas constant (Pa.m\(^3\)/kmol.K)
- \(MM_{RG,m} \) = Molecular mass of the residual gas in minute \(m \) (kg/kmol)
- \(T_{ref} \) = Temperature at reference conditions (K)

Use the equation below to calculate \(MM_{RG,m} \). When applying this equation, project participants may choose to either a) use the measured volumetric fraction of each component \(i \) of the residual gas, or b) as a simplification, measure the volumetric fraction of methane and consider the difference to 100% as being nitrogen (N\(_2\)). The same equation applies, irrespective of which option is selected.

\[MM_{RG,m} = \sum_i (v_{i,RG,m} \times MM_i) \]

(7)

Where:
- \(MM_{RG,m} \) = Molecular mass of the residual gas in minute \(m \) (kg/kmol)
- \(MM_i \) = Molecular mass of residual gas component \(i \) (kg/kmol)
- \(v_{i,RG,m} \) = Volumetric fraction of component \(i \) in the residual gas on a dry basis at reference conditions in the hour \(h \)
- \(i \) = Components of the residual gas. If Option (a) is selected to measure the volumetric fraction, then \(i = \text{CH}_4, \text{CO}, \text{CO}_2, \text{O}_2, \text{H}_2, \text{H}_2\text{S}, \text{NH}_3, \text{N}_2 \) or if Option (b) is selected then \(i = \text{CH}_4 \) and \(\text{N}_2 \)

Step 2.4: Determine the volume of the exhaust gas on a dry basis at reference conditions per kilogram of residual gas (Q\(_{EG,m}\))

\[Q_{CO2,EG,m} \] shall be determined as follows:

\[Q_{EG,m} = Q_{CO2,EG,m} + Q_{O2,EG,m} + Q_{N2,EG,m} \]

(8)

Where:
- \(Q_{EG,m} \) = Volume of the exhaust gas on a dry basis per kg of residual gas on a dry basis at reference conditions in the minute \(m \) (m\(^3\)/kg residual gas)
- \(Q_{CO2,EG,m} \) = Quantity of CO\(_2\) volume in the exhaust gas per kg of residual gas on a dry basis at reference conditions in the minute \(m \) (m\(^3\)/kg residual gas)
- \(Q_{N2,EG,m} \) = Quantity of N\(_2\) volume in the exhaust gas per kg of residual gas on a dry basis at reference conditions in the minute \(m \) (m\(^3\)/kg residual gas)
- \(Q_{O2,EG,m} \) = Quantity of O\(_2\) volume in the exhaust gas per kg of residual gas on a dry basis at reference conditions in the minute \(m \) (m\(^3\)/kg residual gas)

with

\[Q_{O2,EG,m} = n_{O2,EG,m} \times VM_{ref} \]

(9)
Where:

\[Q_{O_2,EG,m} = \text{Quantity of O}_2 \text{ volume in the exhaust gas per kg of residual gas on a dry basis at reference conditions in the minute } m (m^3/kg \text{ residual gas}) \]

\[n_{O_2,EG,m} = \text{Quantity of O}_2 (\text{moles}) \text{ in the exhaust gas per kg of residual gas flared on a dry basis at reference conditions in minute } m (\text{kmol/kg residual gas}) \]

\[\text{VM}_{\text{ref}} = \text{Volume of one mole of any ideal gas at reference temperature and pressure} (m^3/kmol) \]

\[Q_{N_2,EG,m} = \text{VM}_{\text{ref}} \times \left[\frac{\text{MF}_{N,RG,m}}{2 \times \text{AM}_N} + \left(\frac{1 - v_{O_2,air}}{v_{O_2,air}} \right) \times \left(F_{O_2,RG,m} + n_{O_2,EG,m} \right) \right] \] (10)

Where:

\[Q_{N_2,EG,m} = \text{Quantity of N}_2 (\text{volume}) \text{ in the exhaust gas per kg of residual gas on a dry basis at reference conditions in the minute } m (m^3/kg \text{ residual gas}) \]

\[\text{VM}_{\text{ref}} = \text{Volume of one mole of any ideal gas at reference temperature and pressure} (m^3/kmol) \]

\[\text{MF}_{N,RG,m} = \text{Mass fraction of nitrogen in the residual gas in the minute } m \]

\[\text{AM}_N = \text{Atomic mass of nitrogen (kg/kmol)} \]

\[v_{O_2,air} = \text{Volumetric fraction of O}_2 \text{ in air} \]

\[F_{O_2,RG,m} = \text{Stoichiometric quantity of moles of O}_2 \text{ required for a complete oxidation of one kg residual gas in minute } m (\text{kmol/kg residual gas}) \]

\[n_{O_2,EG,m} = \text{Quantity of O}_2 (\text{moles}) \text{ in the exhaust gas per kg of residual gas flared on a dry basis at reference conditions in minute } m (\text{kmol/kg residual gas}) \]

\[Q_{CO_2,EG,m} = \frac{\text{MF}_{C,RG,m}}{\text{AM}_C} \times \text{VM}_{\text{ref}} \] (11)

Where:

\[Q_{CO_2,EG,m} = \text{Quantity of CO}_2 \text{ volume in the exhaust gas per kg of residual gas on a dry basis at reference conditions in the minute } m (m^3/kg \text{ residual gas}) \]

\[\text{MF}_{C,RG,m} = \text{Mass fraction of carbon in the residual gas in the minute } m \]

\[\text{AM}_C = \text{Atomic mass of carbon (kg/kmol)} \]

\[\text{VM}_{\text{ref}} = \text{Volume of one mole of any ideal gas at reference temperature and pressure} (m^3/kmol) \]

\[n_{O_2,EG,m} = \frac{v_{O_2,EG,m}}{1 - \left(v_{O_2,EG,m} / v_{O_2,air} \right)} \times \left[\frac{\text{MF}_{C,RG,m}}{\text{AM}_C} + \frac{\text{MF}_{N,RG,m}}{2 \times \text{AM}_N} + \left(\frac{1 - v_{O_2,air}}{v_{O_2,air}} \right) \times F_{O_2,RG,m} \right] \] (12)

Where:

\[n_{O_2,EG,m} = \text{Quantity of O}_2 (\text{moles}) \text{ in the exhaust gas per kg of residual gas flared on a dry basis at reference conditions in minute } m (\text{kmol/kg residual gas}) \]

\[v_{O_2,EG,m} = \text{Volumetric fraction of O}_2 \text{ in the exhaust gas on a dry basis at reference conditions in the minute } m \]

\[v_{O_2,air} = \text{Volumetric fraction of O}_2 \text{ in the air} \]

\[\text{MF}_{C,RG,m} = \text{Mass fraction of carbon in the residual gas in the minute } m \]

\[\text{AM}_C = \text{Atomic mass of carbon (kg/kmol)} \]

\[\text{MF}_{N,RG,m} = \text{Mass fraction of nitrogen in the residual gas in the minute } m \]

\[\text{AM}_N = \text{Atomic mass of nitrogen (kg/kmol)} \]

\[F_{O_2,RG,m} = \text{Stoichiometric quantity of moles of O}_2 \text{ required for a complete oxidation of one kg residual gas in minute } m (\text{kmol/kg residual gas}) \]

\[
F_{O_2,\text{RG},m} = \frac{MF_{C,\text{RG},m}}{AM_C} + \frac{MF_{H,\text{RG},m}}{4AM_H} - \frac{MF_{O,\text{RG},m}}{2AM_O}
\]

(13)

Where:

- \(F_{O_2,\text{RG},m} \) = Stochiometric quantity of moles of \(O_2 \) required for a complete oxidation of one kg residual gas in minute \(m \) (kmol/kg residual gas)
- \(MF_{C,\text{RG},m} \) = Mass fraction of carbon in the residual gas in the minute \(m \)
- \(AM_C \) = Atomic mass of carbon (kg/kmol)
- \(MF_{O,\text{RG},m} \) = Mass fraction of oxygen in the residual gas in the minute \(m \)
- \(AM_O \) = Atomic mass of oxygen (kg/kmol)

Determine the mass fractions of carbon, hydrogen, oxygen and nitrogen in the residual gas, using the volumetric fraction of component \(i \) in the residual gas and applying the equation below. In applying this equation, the project participants may choose to either a) use the measured volumetric fraction of each component \(i \) of the residual gas, or (b) as a simplification, measure the volumetric fraction of methane and consider the difference to 100% as being nitrogen (\(N_2 \)). The same equation applies, irrespective of which option is selected.

\[
MF_{j,\text{RG},m} = \frac{\sum v_{i,\text{RG},m} \times AM_j \times NA_{j,i}}{MM_{\text{RG},m}}
\]

(14)

Where:

- \(MF_{j,\text{RG},m} \) = Mass fraction of element \(j \) in the residual gas in the minute \(m \)
- \(v_{i,\text{RG},m} \) = Volumetric fraction of component \(i \) in the residual gas on a dry basis in the minute \(m \)
- \(AM_j \) = Atomic mass of element \(j \) (kg/kmol)
- \(NA_{j,i} \) = Number of atoms of element \(j \) in component \(i \)
- \(MM_{\text{RG},m} \) = Molecular mass of the residual gas in minute \(m \) (kg/kmol)
- \(j \) = elements C, O, H and N
- \(i \) = Component of residual gas. If Option (a) is selected to measure the volumetric fraction, then \(i = \text{CH}_4, \text{CO}, \text{CO}_2, \text{O}_2, \text{H}_2, \text{H}_2\text{S}, \text{NH}_3, \text{N}_2 \) or if Option (b) is selected then \(i = \text{CH}_4 \) and \(\text{N}_2 \)

Step 3: Calculation of project emissions from flaring

Project emissions from flaring are calculated as the sum of emissions for each minute \(m \) in year \(y \), based on the methane mass flow in the residual gas \(F_{\text{CH}_4,\text{RG},m} \) and the flare efficiency \(\eta_{\text{flare},m} \), as follows:

\[
PE_{\text{flare},y} = GWP_{\text{CH}_4} \times \sum_{m=1}^{525600} F_{\text{CH}_4,\text{RG},m} \times \left(1 - \eta_{\text{flare},m}\right) \times 10^{-3}
\]

(15)

Where:

- \(PE_{\text{flare},y} \) = Project emissions from flaring of the residual gas in year \(y \) (t\(\text{CO}_2\text{e} \))
- \(GWP_{\text{CH}_4} \) = Global warming potential of methane valid for the commitment period (t\(\text{CO}_2\text{e}/\text{tCH}_4 \))
- \(F_{\text{CH}_4,\text{RG},m} \) = Mass flow of methane in the residual gas in the minute \(m \) (kg)
- \(\eta_{\text{flare},m} \) = Flare efficiency in minute \(m \)
Data and parameters not monitored

Parameters and data that are not monitored include the constants used in equations, as listed in Table 1 below.

Table 1: Constants used in equations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SI Unit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM(_{\text{CH}_4})</td>
<td>kg/kmol</td>
<td>Molecular mass of methane</td>
<td>16.04</td>
</tr>
<tr>
<td>MM(_{\text{CO}})</td>
<td>kg/kmol</td>
<td>Molecular mass of carbon monoxide</td>
<td>28.01</td>
</tr>
<tr>
<td>MM(_{\text{CO}_2})</td>
<td>kg/kmol</td>
<td>Molecular mass of carbon dioxide</td>
<td>44.01</td>
</tr>
<tr>
<td>MM(_{\text{O}_2})</td>
<td>kg/kmol</td>
<td>Molecular mass of oxygen</td>
<td>32.00</td>
</tr>
<tr>
<td>MM(_{\text{H}_2})</td>
<td>kg/kmol</td>
<td>Molecular mass of hydrogen</td>
<td>2.02</td>
</tr>
<tr>
<td>MM(_{\text{N}_2})</td>
<td>kg/kmol</td>
<td>Molecular mass of nitrogen</td>
<td>28.02</td>
</tr>
<tr>
<td>AM(_{\text{C}})</td>
<td>kg/kmol (g/mol)</td>
<td>Atomic mass of carbon</td>
<td>12.00</td>
</tr>
<tr>
<td>AM(_{\text{H}})</td>
<td>kg/kmol (g/mol)</td>
<td>Atomic mass of hydrogen</td>
<td>1.01</td>
</tr>
<tr>
<td>AM(_{\text{O}})</td>
<td>kg/kmol (g/mol)</td>
<td>Atomic mass of oxygen</td>
<td>16.00</td>
</tr>
<tr>
<td>AM(_{\text{N}})</td>
<td>kg/kmol (g/mol)</td>
<td>Atomic mass of nitrogen</td>
<td>14.01</td>
</tr>
<tr>
<td>P(_{\text{ref}})</td>
<td>Pa</td>
<td>Atmospheric pressure at reference conditions</td>
<td>101 325</td>
</tr>
<tr>
<td>R(_{\text{u}})</td>
<td>Pa.m(^3)/kmol.K</td>
<td>Universal ideal gas constant</td>
<td>0.008314472</td>
</tr>
<tr>
<td>T(_{\text{ref}})</td>
<td>K</td>
<td>Temperature at reference conditions</td>
<td>273.15</td>
</tr>
<tr>
<td>v(_{\text{O}_2,\text{air}})</td>
<td>Dimensionless</td>
<td>O(_2) volumetric fraction of air</td>
<td>0.21</td>
</tr>
<tr>
<td>GWP(_{\text{CH}_4})</td>
<td>t(_{\text{CO}2})/t({\text{CH}_4})</td>
<td>Global warming potential of methane valid for the commitment period</td>
<td>21 (for the first commitment period)</td>
</tr>
<tr>
<td>MV(_n)</td>
<td>m(^3)/Kmol</td>
<td>Volume of one mole of any ideal gas at reference conditions</td>
<td>22.414</td>
</tr>
<tr>
<td>ρ(_{\text{CH}_4,\text{a}})</td>
<td>kg/m(^3)</td>
<td>Density of methane gas at reference conditions</td>
<td>0.716</td>
</tr>
<tr>
<td>NA(_{ij})</td>
<td>Dimensionless</td>
<td>Number of atoms of element j in component i, depending on molecular structure</td>
<td>-</td>
</tr>
<tr>
<td>VM(_{\text{ref}})</td>
<td>m(^3)/kmol</td>
<td>Volume of one mole of any ideal gas at reference temperature and pressure</td>
<td>22.4</td>
</tr>
</tbody>
</table>

Data / Parameter: GWP\(_{\text{CH}_4}\)
Data unit: t\(_{\text{CO}_2}\)/t\(_{\text{CH}_4}\)
Description: Global warming potential of methane valid for the commitment period
Source of data: IPCC
Value to be applied: 21 for the first commitment period. Shall be updated for future commitment periods according to any future COP/MOP decisions
Any comment: -
Data / Parameter: SPEC_flares
Data unit: Temperature - °C
Flow rate or heat flux - kg/h or m³/h
Maintenance schedule - number of days

Description: Manufacturer’s flare specifications for temperature, flow rate and maintenance schedule

Source of data: Flare manufacturer

Measurement procedures: Document in the CDM-PDD the flare specifications set by the manufacturer for the correct operation of the flare for the following parameters:
(a) Minimum and maximum inlet flow rate, if necessary converted to flow rate at reference conditions or heat flux;
(b) Minimum and maximum operating temperature; and
(c) Maximum duration in days between maintenance events

Any comment: Only applicable in case of enclosed flares. The maintenance schedule is not required if Option A is selected to determine flare efficiency of an enclosed flare

III. MONITORING METHODOLOGY PROCEDURE

Data and parameters to be monitored
All monitored data must be linked in time, i.e. calculations shall be performed considering only a set of data acquired in the same time interval in case of continuous monitoring. Project participants shall use one minute or a smaller discrete time interval for reporting purposes.

Data / Parameter: \(F_{CH4,EG,t} \)
Data unit: kg

Description: Mass flow of methane in the exhaust gas of the flare on a dry basis at reference conditions in the time period \(t \)

Source of data: Measurements undertaken by a third party accredited entity

Measurement procedures: Measure the mass flow of methane in the exhaust gas according to an appropriate national or international standard e.g. UKs Technical Guidance LFTGNI05.
The time period \(t \) over which the mass flow is measured must be at least one hour.
The average flow rate to the flare during the time period \(t \) must be greater than the average flow rate observed for the previous six months

Monitoring frequency: Biannual

QA/QC procedures According to the standard applied

Any comment: Monitoring of this parameter is required in the case of enclosed flares and if the project participants select Option B.1 to determine flare efficiency
Data / Parameter: $T_{EG,m}$

<table>
<thead>
<tr>
<th>Data unit:</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Temperature in the exhaust gas of the enclosed flare in minute m</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Project participants</td>
</tr>
<tr>
<td>Measurement procedures:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measure the temperature of the exhaust gas in the flare by an appropriate temperature measurement equipment. Measurements outside the operational temperature specified by the manufacturer may indicate that the flare is not functioning correctly and may require maintenance. Flare manufacturers must provide suitable monitoring ports for the monitoring of the temperature of the flare. These would normally be expected to be in the middle third of the flare. Where more than one temperature port is fitted to the flare, the flare manufacturer must provide written instructions detailing the conditions under which each location shall be used and the port most suitable for monitoring the operation of the flare according to manufacturers specifications for temperature</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Once per minute</td>
</tr>
<tr>
<td>QA/QC procedures</td>
<td>Temperature measurement equipment should be replaced or calibrated in accordance with their maintenance schedule</td>
</tr>
<tr>
<td>Any comment:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unexpected changes such as a sudden increase/drop in temperature can occur for different reasons. These events should be noted in the site records along with any corrective action that was implemented to correct the issue. Monitoring of this parameter is applicable in case of enclosed flares. Measurements are required to determine if manufacturer’s flare specifications for operating temperature are met</td>
</tr>
</tbody>
</table>

Data / Parameter: $v_{i,RG,m}$

| Data unit: | - |
| Description: |
	Volumetric fraction of component i in the residual gas on a dry basis in the minute m where $i = \text{CH}_4, \text{CO}, \text{CO}_2, \text{O}_2, \text{H}_2, \text{H}_2\text{S}, \text{NH}_4, \text{N}_2$
Source of data:	Measurements by project participants using a continuous gas analyser
Measurement procedures:	Measurement may be made on either dry or wet basis. If value is made on a wet basis, then it shall be converted to dry basis for reporting
Monitoring frequency:	Continuously. Values to be averaged on a minute basis
QA/QC procedures	Analysers must be periodically calibrated according to the manufacturer’s recommendation. A zero check and a typical value check should be performed by comparison with a standard certified gas
Any comment:	
	As a simplified approach, project participants may only measure the content CH$_4$, CO and CO$_2$ of the residual gas and consider the remaining part as N$_2$. Monitoring of this parameter is only applicable in case of enclosed flares and continuous monitoring of the flare efficiency
Data / Parameter: \(V_{RG,m} \)

<table>
<thead>
<tr>
<th>Data unit:</th>
<th>m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Volumetric flow of the residual gas on a dry basis at reference conditions in the minute m</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Measurements by project participants using a flow meter</td>
</tr>
<tr>
<td>Measurement procedures:</td>
<td>Instruments with recordable electronic signal (analogical or digital)</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Continuously. Values to be averaged on a minute basis</td>
</tr>
<tr>
<td>QA/QC procedures</td>
<td>Flow meters are to be periodically calibrated according to the manufacturer’s recommendation</td>
</tr>
<tr>
<td>Any comment:</td>
<td>Monitoring of this parameter is applicable in case of enclosed flares and continuous monitoring of the flare efficiency and if project participant selects to calculate (V_{RG,m}) instead of monitoring directly. Monitoring of this parameter may also be necessary for confirming that the manufacturer’s specifications for flow rate/heat flux are met. In this case the flow rate should be measured in a m³/h basis</td>
</tr>
</tbody>
</table>

Data / Parameter: \(M_{RG,m} \)

<table>
<thead>
<tr>
<th>Data unit:</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Mass flow of the residual gas on a dry basis at reference conditions in the minute m</td>
</tr>
<tr>
<td>Source of data:</td>
<td>-</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Instruments with recordable electronic signal (analogical or digital)</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Continuous, values to be averaged on a minute basis</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>Periodic calibration against a primary device provided by an independent accredited laboratory is mandatory. Calibration and frequency of calibration is according to manufacturer’s specifications</td>
</tr>
<tr>
<td>Any comment:</td>
<td>Monitoring of this parameter is applicable in case of enclosed flares and continuous monitoring of the flare efficiency and if project participant selects to monitor (M_{RG,m}) directly, instead of calculating. Monitoring of this parameter may also be necessary for confirming that the manufacturer’s specifications for flow rate/heat flux are met. In this case the flow rate should be measured in a kg/h basis</td>
</tr>
</tbody>
</table>

Data / Parameter: \(V_{O2,EG,m} \)

<table>
<thead>
<tr>
<th>Data unit:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Volumetric fraction of O₂ in the exhaust gas on a dry basis at reference conditions in the minute m</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Measurements by project participants using a continuous gas analyser</td>
</tr>
<tr>
<td>Measurement procedures:</td>
<td>Extractive sampling analysers with water and particulates removal devices or in situ analysers for wet basis determination. The point of measurement (sampling point) shall be in the upper section of the flare (80% of total flare height). Sampling shall be conducted with appropriate sampling probes adequate to high temperatures level (e.g. inconel probes)</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Continuously. Values to be averaged on a minute basis</td>
</tr>
</tbody>
</table>
QA/QC procedures: Analysers must be periodically calibrated according to the manufacturer’s recommendation. A zero check and a typical value check should be performed by comparison with a standard gas.

Any comment: Monitoring of this parameter is only applicable in case of enclosed flares and continuous monitoring of the flare efficiency.

<table>
<thead>
<tr>
<th>Data / Parameter</th>
<th>Description</th>
<th>Source of data</th>
<th>Measurement procedures</th>
<th>Monitoring frequency</th>
<th>QA/QC procedures</th>
<th>Any comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{CH4,gas,m}$</td>
<td>Concentration of methane in the exhaust gas of the flare on a dry basis at reference conditions in the minute m</td>
<td>Measurements by project participants using a continuous gas analyser</td>
<td>Extractive sampling analysers with water and particulates removal devices or in situ analyser for wet basis determination. The point of measurement (sampling point) shall be in the upper section of the flare in order that the sampling is of the gas after consumption has taken place (80% of total flare height). Sampling shall be conducted with appropriate sampling probes adequate to high temperatures level (e.g. inconel probes)</td>
<td>Continuously. Values to be averaged on a minute basis</td>
<td>Analysers must be periodically calibrated according to manufacturer’s recommendation. A zero check and a typical value check should be performed by comparison with a standard gas</td>
<td>Monitoring of this parameter is only applicable in case of enclosed flares and continuous monitoring of the flare efficiency. Measurement instruments may read ppmv or % values. To convert from ppmv to mg/m3 simply multiply by 0.716. 1% equals 10 000 ppmv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data / Parameter</th>
<th>Description</th>
<th>Source of data</th>
<th>Measurement procedures</th>
<th>Monitoring frequency</th>
<th>QA/QC procedures</th>
<th>Any comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{Flame,m}$</td>
<td>Flame detection of flare in the minute m</td>
<td>Project participants</td>
<td>Measure using a fixed installation optical flame detector: Ultra Violet detector or Infra Red or both</td>
<td>Once per minute. Detection of flame recorded as a minute that the flame was on, otherwise recorded as a minute that the flame was off</td>
<td>Equipment shall be maintained and calibrated in accordance with manufacturer’s recommendations</td>
<td>Applicable to all flares</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data / Parameter</th>
<th>Description</th>
<th>Source of data</th>
<th>Measurement procedures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_{Maintenance}$</td>
<td>Maintenance events completed in year y</td>
<td>Project participants</td>
<td>Record the date that maintenance events were completed in year y. Records of maintenance logs must include all aspects of the maintenance including the details of the person(s) undertaking the work, parts replaced, or needing to be replaced, source of replacement parts, serial numbers and calibration certificates</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring frequency: | Annual
QA/QC procedures | Records must be kept in a maintenance log for two years beyond the life of the flare

Any comment: Monitoring of this parameter is required for the case of enclosed flares and the project participant selects Option B to determine flare efficiency. These dates are required so that they can be compared to the maintenance schedule to check that maintenance events were completed within the minimum time between maintenance events specified by the manufacturer (SPEC_{flare}).

IV. REFERENCES

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Nature of revision(s)</th>
</tr>
</thead>
</table>
| 02.0.0 | 20 July 2012 | EB 68, Annex 15 The revision:
• Provides an additional option for determining the methane destruction efficiency of an enclosed flare, using biannual measurements of the efficiency of the flare;
• Expands the applicability of the tool to flaring gases that also contain ammonium and hydrogen sulfide;
• Defines low height flares and specifies how the methane destruction efficiency shall be determined for this type of flares;
• Changes the title from methodological “Tool to determine project emissions from flaring gases containing methane” to “Project emissions from flaring”;
• Improves the structure and other editorial aspects.
Due to the overall modification of the document, no highlights of the changes are provided. |

| 01.0.0 | EB 28, Annex 13 15 December 2006 | Initial adoption. |

Decision Class: Regulatory
Document Type: Tool
Business Function: Methodology