MONITORING REPORT

Monitoring Period 01.11.2004 to 31.03.2007 (Both days included)

Version: 05

Date: 03/09/2007

Project 0578: Deoband bagasse based Co-generation Power Project

Project Site:

Deoband Village, Saharanpur District, Uttar Pradesh

Triveni Engineering & Industries Limited (TEIL)

15-16, Sector 16-A

8th Floor, Express Trade Towers

Noida ,

Uttar Pradesh - 201301

Email: ssinha@ho.trivenigroup.com

Table of contents

S.No.	Content	Page
1.	Current Status of the Project	3
2.	Statement to what extent the Project has	4
	been implemented as planned	
3.	Statement to the sustainability development	6
	with the project activity	
4.	Parameters being monitored as per the	7
	monitoring plan	
5.	Electricity generation data	13
6.	Biomass Transportation Data	15
7.	Fuel Consumption Data	16
8.	Emission reduction	18
8.	Measures to ensure the Results / uncertainty	20
	analysis	
9.	Roles and responsibilities	21

Current Status of the Project

The bagasse based Co-generation Power Project has been successfully commissioned by Triveni Engineering & Industries Limited (TEIL) at Deoband Village, Saharanpur District, Uttar Pradesh, and is operational since November 2004.

The major equipments commissioned in the project activity are as follows:

Boiler details

Description	1nos. water tube
Steam generating capacity (tons per hour)	120
Steam pressure (kg/cm ²)	87
Steam temperature (°C)	515

Turbine details

Description	1no. extraction cum condensing turbine
Power (kW)	22000
Steam inlet pressure(kg/cm ²)	84

Statement to what extent the Project has been implemented as planned

The Project has been completed as planned and described in the Project Design Document (PDD).

Reference: http://cdm.unfccc.int

The plant is in operation continuously (with outages – forced & planned) since November 2004. The plant is using the available sugar mill generated bagasse and bought bagasse which was available surplus in the market as a fuel for the co-generation. The project activity uses a portion of the steam and electricity to run its own cane crushing facility and cogeneration plant and exports surplus power to the UPPCL.

TA /	• 4	•	T	•	1
Mor	11ta	ring	· PA	MIU	М
171()1	HU	11112		1117	u

The Monitoring Period is chosen from 01.11.2004 to 31.03.2007 (both days included).

Statement to the sustainable development with the project activity

- ➤ The project activity has resulted in providing employment opportunities to for the local people.
- > The project activity contributes in conserving the fossil fuel like coal which can now be utilized for other useful purposes.
- ➤ By generating clean power, project activity has helped to eliminate an equivalent amount of carbon dioxide emissions which would have been otherwise generated due to power generation at grid.

Parameters being monitored as per the monitoring plan

The following parameters are monitored on regular basis:

Parameter	Monitoring	Instrument	Recording	QA/QC	Calibration	%
	method	used	frequency			accuracy
						level
Quantity of	Quantity of	Weigh	Continuous	The details of	Calibrated	
Biomass	biomass	bridge		the number of	periodically as	
transported	transported on			trucks carrying	per standard	98%
(tones)	trucks has			the bagasse,	procedures by	
	been			quantity of	accredited third	
	measured on a			bagasse in each	party	
	weigh			truck are	agencies.	
	bridge,			recorded in a		
	provided with			log book on a		
	suitable scale			regular basis.		
	to measure the					
	weight					
Average	Mean value of	Distance	Continuous	Regular		NA
return trip	km travelled	meters		recording of the		
distance	by trucks is			distance of		
between	recorded			transportation		
biomass				of each truck is		
fuel				done in the log		
supply site				book.		
and project						
site.						
(km)						
Number of	Number of	-	Continuous	Regular		NA
truck trips	truck trips are			recording of the		
for biomass	measured and			distance of		
transportati	recorded in			transportation		
on	log books			of each truck is		
				done in the log		

				book.		
Average	National data		Annually			NA
CO_2	is					
emission	Chosen.					
factor for						
transportati						
on of						
biomass						
with trucks						
(tCO ₂ /Km)						
Net	Net quantity	Energy meters	Continuous		Calibrated	99.5%
quantity of	of				periodically as	
electricity	electricity				per standard	
generated in	produced is				procedures by	
the project	been				accredited third	
plant during	monitored by				party	
the year	energy meters				Agencies.	
(MWh)	of class 0.2					
Total	Total quantity	Energy meters	Continuous		Calibrated	99.5%
quantity	of				periodically as	
of	electricity				per standard	
electricity	produced has				procedures by	
generated at	been				accredited third	
the project	monitored by				party	
site	energy meters				Agencies.	
(Including	of class- 0.2					
the project						
plant						
and any						
other						
plant at site						
existing at						

the					
start of the					
project					
activity)					
(MWh)					
Net	Net quantiy of	Flow meter	Continuous	All Meters are	99%
quantity of	heat can			calibrated	
heat	Be calculated			by accredited	
generated	from			external	
from firing	monitored			third party,	
biomass in	parameters.			periodically	
the project					
plant					
(MWh)					
Quantity of	Quantity of	Weigh bridge	Continuous		99.5%
biomass	biomass type				
type	combusted in				
combusted	the project				
in	plant is				
the project	measured				
plant	on weigh				
(tonne)	bridge.				
Net	Net Calorific	Bomb		Calibrated	98%
calorific	value of	calorimeter		periodically as	70 %
value of	biomass has			per standard	
biomass	been			procedures by	
(Kcal/tonne	measured in			accredited third	
)	accredited.			party	
	labs.			agencies.	
	1405.			ugonoros.	
					NA
	Thermal				
Thermal					

energy	energy					
efficiency	efficiency is					
	calculated					
	from the heat					
	input (from					
	biomass					
	combustion)					
	and the					
	enthalpy of					
	the steam					
Steam	The	Thermocouple	Hourly	The values are	The	99.9 %
temperature	thermocouple	based		recorded	temperature	
(°C)	based	temperature		continuously on	measuring	
	temperature	measuring		hourly basis in	device is	
	measuring	device.		the DCS. In	calibrated	
	device is			order to	regularly as per	
	being used for			maintain the	the	
	the			highest levels of	manufacturers'	
	continuous			accuracy the	specification.	
	monitoring of			measuring		
	the parameter.			instruments are		
	The data is			calibrated		
	continuously			regularly as per		
	recorded in			the		
	the			manufacturers'		
	Distributed			specification.		
	Control					
	System (DCS)					
	on an hourly					
	basis. The					
	hourly values					
	for the day are					
	averaged out					
	to compute					

	the daily					
	average					
	values .The					
	average					
	monthly					
	values are					
	arrived at by					
	averaging out					
	the daily					
	reported					
	values for the					
	month.					
Steam	The	Pressure	Hourly	The values are	The measuring	99.9 %
pressure	continuous	transmitter.		recorded	instrument	
(Kg/cm ²)	monitoring of			continuously on	(pressure	
	the parameter			hourly basis in	transmitter) is	
	is being done			the DCS. In	calibrated	
	through the			order to	regularly as per	
	pressure			maintain the	the	
	transmitter.			highest levels of	manufacturers'	
	The data is			accuracy the	specification.	
	recorded in			measuring		
	the			instruments are		
	Distributed			calibrated		
	Control			regularly as per		
	System (DCS)			the		
	on an hourly			manufacturers'		
	basis. The			specification.		
	hourly values					
	for the day are					
	averaged out					
	to compute					
	the daily					
	average					

values .The			
average			
monthly			
values are			
arrived at by			
averaging out			
the daily			
reported			
values for the			
month.			

Electricity Generation Data

Month					Existing Units					Project	Plant	
			Ge	neration (KWh	1)		Auxiliary	Net	Generation (KWh)	Auxiliary	Import form banked	Net
	T1	T2	T3	T4	T5	Total	consumption	Generation	Т6	consumption	electricity	Generation
Nov '04	890,520	863,160	-	2,166,138	1,929,200	5,849,018	612,464	5,236,554	-	-		-
Dec '04	699,480	753,720	-	2,179,190	2,037,672	5,670,062	616,272	5,053,790	10,460,000	1,107,550	61,920	9,290,530
Jan '05	90,000	193,980	-	923,078	1,507,584	2,714,642	615,289	2,099,353	10,672,000	1,072,313	52,320	9,547,367
Feb '05	159,840	37,200	-	841,932	1,560,468	2,599,440	616,742	1,982,698	13,970,000	1,406,670	23,760	12,539,570
Mar '05	618,780	8,160	-	2,106,572	2,049,372	4,782,884	614,939	4,167,945	15,609,000	1,569,000	8,880	14,031,120
Apr '05	186,720	-	-	828,464	810,472	1,825,656	329,100	1,496,556	15,048,000	1,429,100	18,960	13,599,940
May '05	-	-	_	-	-	-	-	-	5,918,000	501,000	6,960	5,410,040
Jun '05	_	-	-	-	-	-	-	-	-	-		-
Jul '05	-	-	-	-	-	-	-	-	-	-		-
Aug '05	_	-	-	_	-	-	_	-	-	-		-
Sept '05	_	-	-	_	-	-	_	-	-	-		-
Oct '05	-	-	-	17,602	92,976	110,578	20,520	90,058	3,766,000	511,100	88,320	3,166,580
TOTAL	2,645,340	1,856,220	-	9,062,976	9,987,744	23,552,280	3,425,325	20,126,955	75,443,000	7,596,733		67,585,147
Nov '05	-	162,780	-	1,096,940	1,636,544	2,896,264	614,227	2,282,037	13,928,000	1,415,500	44,880	12,467,620
Dec '05	-	526,560	-	949,676	1,872,728	3,348,964	617,015	2,731,949	15,711,000	1,663,600	6,720	14,040,680
Jan '06	-	19,800	-	833,092	1,711,580	2,564,472	615,243	1,949,229	14,868,000	1,532,000	74,400	13,261,600
Feb '06	78,720	349,740	-	799,942	1,555,008	2,783,410	616,118	2,167,292	14,665,000	1,481,000	7,440	13,176,560
Mar '06	-	640,920	-	917,306	1,768,052	3,326,278	617,244	2,709,034	16,410,000	1,637,000	2,640	14,770,360
Apr '06	24,240	285,420	_	502,554	1,049,412	1,861,626	409,610	1,452,016	15,629,000	1,521,000	16,800	14,091,200
May '06	-	-	-	-	-	-	-	-	15,721,700	1,416,000		14,295,380

											10,320	
Jun '06	-	-	-	-	-	-		-	3,109,000	284,000	261,600	2,563,400
Jul '06	-	-	-	-	-	-	-	-	-	-	291,360	291,360
Aug '06	-	_	-	_	-	-	-	-	-	-	282,240	282,240
Sept '06	-	-	-	-	-	-	-	-	-	-	280,800	280,800
Oct '06	-	-	-	60,658	207,376	268,034	42,633	225,401	1,304,000	215,020	292,280	796,700
TOTAL	102,960	1,985,220	-	5,160,168	9,800,700	17,049,048	3,532,091	13,516,957	111,345,700	11,165,120		98,609,100
Nov '06	379,620	-	-	1,301,162	1,482,902	3,163,684	629,006	2,534,678	14,220,000	1,547,600	19,560	12,652,840
Dec '06	675,800	-	-	1,490,212	1,798,796	3,964,808	630,629	3,334,179	15,638,000	1,617,600	209,160	13,811,240
Jan '07	107,580	_	-	1,151,410	1,739,452	2,998,442	596,153	2,402,289	16,534,000	1,565,800	-	14,968,200
Feb '07	337,140	_	-	1,276,340	1,407,644	3,021,124	921,015	2,100,109	14,415,000	1,475,000	49,080	12,890,920
Mar '07	495,120	_	-	1,414,947	1,644,136	3,554,203	612,429	2,941,774	15,925,000	1,660,676	3,380	14,260,944
TOTAL	1,995,260	-	_	6,634,071	8,072,930	16,702,261	3,389,232	13,313,029	76,732,000	7,866,676		68,584,144

where

T1 - 3MW turbine
T2 - 3MW turbine
T5 - 1.50MW turbine

T3 - 1.25MW turbine T6 - 22MW Project turbine

Biomass Transportation Data

Biomass Quantity transported							
	Tons	KM	No.	KM			
	Quantity	Distance	Truck Nos.	Total distance			
Nov -04	0	0	0	0			
Dec-04	0	0	0	0			
Jan- 05	2686	122	188	22989			
Feb- 05	6826	117	463	54024			
Mar-05	9843	107	660	70369			
Apr-05	15089	88	1077	94925			
May-05	4848	85	378	32032			
Jun-05	19	200	2	400			
Jul-05	0	0	0	0			
Aug-05	0	0	0	0			
Sep-05	0	0	0	0			
Oct-05	7659	100	462	46397			
TOTAL	46970			321136			
Nov -05	9961	95	599	57164			
Dec-05	10719	88	701	61916			
Jan- 06	12983	82	879	72160			
Feb- 06	6528	79	431	33918			
Mar-06	12906	76	854	64972			
Apr-06	7497	158	537	84650			
May-06	2940	112	215	24048			
Jun-06	150	103	10	1028			
Jul-06	0	0	0	0			
Aug-06	0	0	0	0			
Sep-06	0	0	0	0			
Oct-06	173	73	11	803			
TOTAL	63856			400659			
Nov-06	3581	74	232	17142			
Dec-06	6695	75	422	31490			
Jan 07	22702	94	1480	139440			
Feb-07	8924	73	650	47742			
Mar-07	9197	74	660	48532			
TOTAL	51098			284346			

Fuel consumption data

	Quantity	NCV	Heat input	Steam Enthalpy	Steam flow	Heat Output	Efficiency of heat generation	Steam Temperature	Steam pressure
Nov 04	tonnes ()	Kcal/tonne	Kcal 0	Kcal/tonne	tonnes 0	Kcal 0	%		Kg/cm ²
Dec-04	24371	1987000	48425177000	814230	54842	44654001660	92	508.5	83.0
	-								
Jan 05	22729	2095000	47617255000	819550	50842	41667561100	88	507.5	81.5
Feb 05	29654	2278000	67551812000	817650	67640	55305846000	82	517.4	80.7
Mar-05	34756	2100000	72987810000	819300	81105	66449326500	91	507.1	80.3
April-05	27815	2190000	60914850000	817700	70578	57711630600	95	511.0	82.8
May-05	9080	2295000	20838600000	817860	23577	19282685220	93	508.4	81.4
June-05	0	0	0	0	0	0	0	0	0
Jul-05	0	0	0	0	0	0	0	0	0
Aug-05	0	0	0	0	0	0	0	0	0
Sept-05	0	0	0	0	0	0	0	0	0
Oct-05	8596	2080000	17879680000	815930	21383	17447031190	98	505.0	82.2
TOTAL	157001								
Nov-05	29830	2110000	62941300000	814770	74825	60965165250	97	506.5	83.8
Dec-05	34344	2261000	77651784000	814320	86345	70312460400	91	506.7	85.4
Jan 06	31227	2330000	72758910000	805520	78487	63222848240	87	494.1 [*]	80.2
Feb-06	31815	2194000	69802110000	814940	78488	63963010720	92	507.7	84.8
Mar-06	35571	2185000	77722635000	814960	87252	71106889920	91	507.8	85.4
April-06	32042	2015000	64564630000	814740	78224	63732221760	99	506.7	84.7
May-06	25119	2072000	52046568000	815010	62503	50940570030	98	503.9	82.4
Jun -06	4954	2171000	10755134000	815850	12219	9968871150	93	505.2	81.6

Jul-06	0	0	0	0	0	0	0	0	0
Aug-06	0	0	0	0	0	0	0	0	0
Sept-06	0	0	0	0	0	0	0	0	0
Oct-06	3368	1999000	6732632000	810180	8175	6623221500	98	502.3	77.3
TOTAL	228270								
Nov-06	32117	2085000	66963945000	815350	79584	64888814400	97	507	82.2
Dec-06	35399	2280000	80709720000	815520	87666	71493376320	89	508.7	85.2
Jan 07	36188	2065000	74728220000	815100	89398	72868309800	98	508.1	85.7
Feb-07	32265	2024000	65304360000	814090	79360	64606182400	99	506.2	85.0
Mar-07	35845	2201000	78894845000	813380	88150	71699447000	91	504.1	80.8
TOTAL	171814								

^{*} Due to the furnace problem

Emission reduction

Baseline and project emissions are calculated as per the formulas mentioned in Section E of the PDD. The same is given below:

Formulae used

The emission reduction is given by

Emission reduction = Baseline emissions - Project emissions

Baseline emissions

$$ER_{electricity,y} = EG_y \times EF_{electricity,y}$$

where ER $_{electricity,y}$ - are the baseline emissions due to displacement of electricity during the year y in tons of CO_2

EG_y - Min {
$$(EG_{project plant, y}), (EG_{total, y} - (EG_{historic, 3 yr})/3)$$
}

Carbon Emission Factor as per the baseline adopted (t CO2/million KWh)¹ = 923.54

The following table gives the details about the historic generation in Kilo Watt Hours (KwH).

Turbo Generator	T4	T5	T3	T1	T2	Total
2001- 2002	4170480	4277190	0	10783292	10958904	30189866
2002- 2003	4279200	4570080	0	10621988	10544352	30015620
2003- 2004	4542060	4880640	0	11175840	11134240	31732780

The historic generation details had been verified by DOE during validation

Project emissions

$$PET_y = \sum_{i} FC_{TR,i,y} \cdot NCV_i \cdot EF_{CO2,FC,i}$$

where

PET_Y CO₂ emissions during the year due to transport of the biomass residues to

the project plant (tCO₂/MWh)

FC_{TR I} (ton) Fuel consumption of diesel in trucks for transportation of biomass

residues during the year y (mass unit per year)

EF_{CO2,FF,I} CO₂ emission factor for diesel (tCO₂/GJ)

¹ http://cdm.unfccc.int

NCV_i Net calorific value of diesel (kJ/t)

Density of diesel $(t/klitre)^2$ = 0.83

Net calorific value of diesel $(KJ/t)^3$ = 41.76

 CO_2 emission factor for diesel $(tCO_2/GJ)^4 = .0741$

Emission reductions

Baseline emissions (t CO_2) for Nov '04 – Oct '05 = **52,703**

Project emissions (t CO_2) Nov '04 – Oct '05 = **206**

Emission reductions = 52,703 - 206

= 52,497

Baseline emissions (t CO2) for Nov '05 – Oct'06 = 75250

Project emissions (t CO_2) Nov '05 – Oct '06 = 257

Emission reductions = 75250 - 257

= 74,993

Baseline emissions (t CO2) for Nov '06 – Mar '07 = 63,097

Project emissions (t CO_2) Nov '06 – Oct '07 = **183**

Emission reductions = 63,097 - 183

= 62,915

² Baseline Carbon Dioxide Emission Database Version 1.1 (<u>www.cea.nic.in</u>)

³ Baseline Carbon Dioxide Emission Database Version 1.1 (<u>www.cea.nic.in</u>)

⁴ Baseline Carbon Dioxide Emission Database Version 1.1 (<u>www.cea.nic.in</u>)

Period	Baseline Emission factor (tCO ₂ /MWh)	Net Power produced (MWh)	Project emissions (ton of CO ₂)	Baseline emissions (ton of CO2)	Emission reductions (ton of CO2)
Nov 04-Oct 05	0.92	57,586.11	206	52703	52497
Nov 05-Oct 06	0.92	82,348.35	257	75250	74993
Nov 06-Mar 07	0.92	68,584.14	183	63097	62915

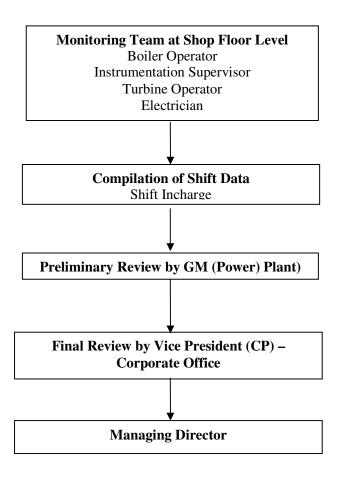
Total Emission Reduction (t CO_2) = 190,404

Measures to ensure the Results / uncertainty analysis

As per the Power Purchase Agreement (PPA), the energy exported to the UPPCL Grid is recorded from two independent meters viz., Main Meter and Check Meter and reading of main meter is used for billing. In the event of main meter not in operation / fails, the reading of the check meter shall be used for billing. The Calibration of monitoring equipment has been carried out according to the specifications of the equipment (Ist calibration in 2 years of installation and thereafter subsequent calibrations at an interval of 1 year). Power Generation, Export & Auxiliary Consumption, fuel consumption are being recorded daily and the same is being verified and approved by Manager (O&M).

Roles and responsibilities

Shift Engineer (Co-Gen) is responsible for monitoring of daily data of the steam generated from bagasse based boiler, steam fed to turbine, parameters of steam and flow meter readings of the captive power plant. The report is then sent to the GM (Power Plant) for the review.


Shift Electrician (Electrical) is Responsible for taking meter readings for electricity generation daily.

Shift Incharge is Responsible for compilation of data which is then sent to GM (Power) for preliminary review.

The electricity generation details report is sent to the GM (Power Plant) through Shift incharge with due verification for his review on a daily basis. In the absence of GM (Power Plant) this role is performed by the Dy. Chief Engineer.

GM (Power Plant) is responsible for reviewing the monitored parameters report on a daily basis and presenting a daily executive summary report, duly signed by himself, to the Vice President (CP) Corporate office which is finally reported to Managing Director (MD), TEIL.

Organization structure responsible for monitoring and reporting of parameters involved in CDM project activity has been presented in the following flow chart.

