
中国生物质能转换技术发展与评价 Biomass Energy Conversion Technologies in China: Development and Assessment

中国农业部/美国能募部 项目专家组 MOA/BOE Project Expert Team

Biomass Energy Conversion Technologies in China: Development and Assessment

Chief Editor

DAI Lin LI Jingming Ralph Overend

China Environmental Science Press · Beijing

Biomass Energy Conversion Technologies in China: Development and Assessment

MOA/DOE Project Expert Team

This book is written and edited based on the output of joint research project "Evaluation of Commercialization of Biomass Energy Conversion Technologies and Their Market Oriented Development Strategy" between Ministry of Agriculture of China and Department of Energy of US. The project has been supported and helped by both governments.

Project Director:WANG XiwuProject Manager:BAI JinmingSenior Consultant:Mm. DENG KeyunCoordinator:LI JingmingDAI Lin

Chief Directors of Chinese Expert Team:

ZHANG Zhengmin, LI Jingjing, DAI Lin Energy Research Institute, State Development Planning Commission

Members of Chinese Expert Team:

LU Zengan	Rural Energy Office, Shandong Province		
WANG Yaojun	Energy Research Institute, Shandong Province		
SUN Li	Energy Research Institute, Shandong Province		
LUO Weihong	Rural Energy Office, Zhejiang Province		
CAI Changda	Hangzhou Institute of Energy and Environmental Engineering		
Design			
QU Feng	Rural Energy Office, Sichuan Province		
JIN Yao	Rural Energy Office, Shanghai		
ZENG Banglong	Sanxing Energy and Environmental Engineering Corp. Shanghai		
XIONG Chengyong	Chengdu Institute of Biogas Science, MOA		
WANG Gehua	Center of Energy & Environmental Protection Technology, MOA		
SU Mingshan	Tsinghua University		
DONG Wei	Energy Research Institute, Liaoning Province		
ZHUANG Xing	Energy Research Institute, State Development Planning Commission		
ZHOU Aiming	Energy Research Institute, State Development Planning Commission		
SHI Jingli	Energy Research Institute, State Development Planning Commission		
LIU Xiaofeng	Energy Research Institute, State Development Planning Commission		
SU Zhengming	Energy Research Institute, State Development Planning		
Commission			
HUANG Zhijie	Energy Research Institute, State Development Planning Commission		

Expert from US side:

Ralph Overend National Renewable Energy Laboratory, USA

Chief Editor: DAI Lin, LI Jingming, Ralph Overend

Writers of each chapter:

Part One Overview

- Chapter 1 DAI Lin, ZHANG Zhengmin, LI Jingming
- Chapter 2 ZHANG Zhengmin, XIONG Chengyong, CAI Changda
- Chapter 3 DAI Lin, SUN Li
- Chapter 4 ZHANG Zhengmin, CAI Changda

Part Two Case Study

- Chapter 5 DAI Lin, LU Zengan
- Chapter 6 SU Mingshan, JIN Yao, ZENG Banglong
- Chapter 7 QU Feng, WANG Gehua
- Chapter 8 SHI Jingli, CAI Changda

Part Three Users Survey Analysis

- Chapter 9 DAI Lin, LIU Xiaofeng, LU Zengan
- Chapter 10 DAI Lin, LIU Xiaofeng, ZENG Banglong

Part Four Appendix

Appendix 1DAI LinAppendix 2ZHANG Zhengmin

With Mr. LOU Zhentao and Mr. Ralph Overend going over the text; and Mr. LIU Xiaofeng laying out the pictures, tables, and articles.

CONTENTS

Preface		107
Introdu	ction	111
Part Or	e Overview	113
Chapter	1 The Development and Assessment of Biomass	
Energy	Conversion Technology in China	113
1.1		
	Energy in China	113
1.2	The Development of Different Types of Biomass	
	Energy Conversion Technology in China	116
Chapter	2 Status Quo and Assessment of the Technology in Large	
and Me	dium Scale Biogas Project on Domestic Husbandry Farms	126
2.1	Status of Development and Technology	126
2.2	Economic, Environmental and Social Assessment of	
	Biogas Projects	132
2.3	Market Potential of Biogas Projects	136
Chapter	• 3 The Development and Assessment of Biomass Gasification	
Convers	sion Technology Fed by Crop Straw	138
3.1	Status of Development and Technology	138
3.2	Economic and Environmental Assessment of Straw	
	Gas supply System	142
3.3	Barriers and Prospects for the Development of Gasification	
	Gas-supply System	143
3.4	Analysis for Gasification Power Generation	
Chapter	• 4 Development Situation and assessment of Municipal Refuse	
Landfill	Biogas-power-generation Technology	144
4.1	Status of Technology Development	149
4.2	Economic Feasibility Analysis of Municipal Waste	
	Power Generation	152

4.3	Market Potential Analysis of Landfill Power Generation	154
Part Two	Case Study	156
Chapter :	5 Biomass gasification System for Central Gas Supply	156
5.1	The project's Background Information	156
5.2	Technological and Economic Characteristics	159
5.3	Investment Analysis	161
5.4	Operating Cost and Benefits	161
5.5	Financial and Economic Analysis	163
5.6	Conclusion and Suggestion	164
Chapter	6 Biogas Supply and Comprehensive Utilization	168
6.1	Case Selection	168
6.2	Techno-economic Feature of the Biogas Works	170
6.3	Investment	171
6.4	Operation cost and Benefit	172
6.5	Financial and Economic Assessment	173
6.6	Social Environmental Benefit	176
6.7	Conclusion and Recommendations	177
Chapter '	7 Biogas Project for Central Gas Supply	179
7.1	Introduction	179
7.2	Technical and Economic Characteristic of Biogas Project	180
7.3	Investment and Benefit	181
7.4	Economic Benefit Analysis	182
7.5	Environmental and Social Impact	185
7.6	Conclusion and Recommendations	
Chapter 8	8 Landfill Gas Used for Power Generation in Tianziling	
Refuse La	andfill in Hangzhou	188
8.1	Site Selection and Relative Accordance	188
8.2	Technical & Economic Characteristics	191
8.3	Investment	193
8.4	Operating Cast and Benefit	193
8.5	Financial and Economic Analysis	194
8.6	Social and Environmental Impact Assessment	197
8.7	Conclusion and Suggestion	198

Part 3 Users Survey Analys	is
----------------------------	----

Chapter 9 Analysis of Users of Biomass Gasification System of	
Central Gas Supply	202
9.1 The Objective and Sample	202
9.2 The Situation of the Sample Village	202
9.3 Availability of Biomass Resources	205
9.4 Energy Utilization Analysis	206
9.5 Analysis on the Attitude to Investment in the Gasification	
System	206
9.6 Conclusion	209
Chapter 10 Analysis of Users of Large-medium Biogas Project for	
Central Gas Supply	210
10.1 The Objective and Sample	210
10.2 Basic Situation	210
10.3 Energy Utilization Analysis	212
10.4 Analysis on the Attitude to Investment in the Gasification	
System	213
10.5 Conclusion	215
Part Four Appendix	216
Appendix I Brief Introduction of Methodology of Techno-economic	
assessment	216
1. Financial Assessment	216
2. National Economic Analysis	220
3. Sensitivity Analysis	221
Appendix II General Procedure of Applying for Loan in China	223
Abbreviation	226

CHAPTER 6 Biogas Supply and Comprehensive Utilization -Economic Evaluation of Biogas Project in Xinghuo Breeding Farm¹

6.1 Case selection

6.1.1 Location of the site

The demand of meat, livestock, and eggs increases greatly as people's income increases, which is the result of China's economic reform policy. In order to meet the need China government promotes the development of the Vegetable Basket Project (Cai Lanzi Gongcheng), which encourage the development of livestock and vegetable plantation to provide the need in cities.

Large-scale livestock development has also aroused environmental pollution issues. The biogas project is one of the technical feasibility options to deal with the discharge from livestock farms. It is not only a project for biogas production for energy consumption but also produces organic fertilizer and fodder at the same time.

As one of the big cities in China, Shanghai's suburb is the base for Vegetable Basket Project. Xinghuo Farm biogas project is one of the good practice in China for biogas project and for biomass comprehensive utilization. Therefore it is selected as the point for case study.

Located in Fengxian County of Shanghai City, the Xinghuo Farm covers an area of 21.67 km^2 with employees of more than 6,600 and residents of 3,900 household (see Figure 6.1). There are three cow farms in it.

6.1.2 Social and economic development and environmental situation

The farm was established in 1959 as a beach-cultivated farm. The farm has become a comprehensive company with agriculture, livestock, industry and trade.

¹ This report is a technology assessment report. It is not a post evaluation report. The date used in this case are based on the case of Xinghuo Farm but are not restricted to it.

Table 6.5 Benefit of the biogas station-economic analysis (1000 Y)		
Biogas	1,441	
Fertilizer	67	
Feeder	269	
Avoided environmental cost	967	
total	2,744	

Cable 6.5 Benefit of the biogas station-economic analysis (1000 Yuan)

Note: As for avoided cost see ITEESA's report to IDRC for more detail.

Table 6.6 Baseline for CO2 abatement cost analysis	Table 6.6
--	-----------

Total investment requirement	1,810,000 Yuan
Life cycle for analysis	20 years
Annual LPG consumption	339 ton
Annual operation cost	903,000 Yuan

Table 6.7	Benefit of the biogas statio	n-financial analysis form	perspective of farmer
-----------	------------------------------	---------------------------	-----------------------

	()	1,000 Yuan)
	LPG	Farm
	substitution price	regulated price
Farm benefit in baseline case	1,980	1,067
Farm benefit without comprehensive utilization	1,644	731
Farm benefit without environmental fee	1,826	913
Farm benefit without environmental fee and without	1,441	528
comprehensive utilization		

 Table 6.8
 Benefit of the biogas station-financial analysis from perspective of farmer (1000

Yuan)

	LPG	Farm
	substitution price	regulated price
Biogas station benefit in baseline case	1,777	864
Biogas station benefit without comprehensive utilization	1,441	528

6.5 Financial and Economic Assessment

The result of economic assessment is shown in Table 6.9. The NPV of baseline is 760,000 *Yuan* while the IRR was 13%.

Sensitive analysis showed that the project is sensitive to initial investment and benefit. If the initial investment increased by 10% or the benefit decreased by 10%

the IRR of the project will become 12%. On the other hand, if the investment decreased by 10% or the benefit increased by 10% the IRR of the project will become 15%, which is higher than 12% of the investment criteria.

As the development of biogas technology the initial investment will be decreased which has been demonstrated by the biogas project practice in China. If the investment decreased by 10% the IRR of the project will become 15%. This means the project may well become a good project.

		NPV (1,000 Yuan)	IRR (%)
Baseline case		755	13
Initial investment	increase by 10%	-470	11
	decrease by 10%	1,980	15
Operation cost	increase by 10%	251	12
	decrease by 10%	1,259	14
Benefit	increase by 10%	2,560	15
	decrease by 10%	-1,049	11
1.1 million subsidy from international society		1,740	14

Table 6.9 Economic assessment and sensitive analysis

Result of financial assessment showed that the NPV of the project will be 78,000 *Yuan* in baseline case while the IRR will be 12%, as shown in Table 6.10. This means that in case the farmed has surplus investment resource the return of investment in biogas station will be slightly higher than the return from deposit the same amount of money in the commercial bank.

We further analyzed the impact of different policy measures. The results showed that

- 1) Initial investment subsidy is helpful for the farms to adopt the biogas technology to treat discharge from livestock farms (Scheme of 2 and 4);
- 2) If farm regulated price is applied, the financial benefit from the biogas station is not high. As a result it will be encourage the farms to invest in the biogas technology.
- 3) Result showed that comprehensive utilization is not the key factor for the financial and economic performance while it affect the financial performance of biogas station.

4) Farm will have less incentive if the regulation on environmental fee is not fully implemented.

5) If China can get initial investment subsidy from outside at a amount based on the CO_2 abatement cost of biogas station the farms and China government will have the incentive to promote and to do the biogas station.

Table 6.10 Financial assessment and sensitivity analysis				
	NPV (1,000 Yuan)	IRR (%)		
Base case: no government subsidy,LPG substitution Price, environment fee	78	12		
Scheme 1: no government subsidy, farmed regulated price, environment fee	-5,920	-3		
Scheme 2: with government subsidy,LPG substitution price, environment fee, with comprehensive utilization	3,420	23		
Scheme 3: with government subsidy, farmed regulated price, with environment fee, with comprehensive utilization	-2,590	2		
Scheme 4: with government subsidy,LPG substitution price, environment fee, without comprehensive utilization	2,460	21		
Scheme 5: with government subsidy, farmed regulated price, with environment fee, without comprehensive utilization	-3,540			
Scheme 6: without government subsidy,LPG substitution price, without environment fee, with comprehensive utilization	-940	10		
Scheme 7: without government subsidy, farmed regulated price, without environment fee, with comprehensive utilization	-6,940			
Scheme 8: with international subsidy,LPG substitution price, environment fee, with comprehensive utilization	1,060	14		

 Table 6.10
 Financial assessment and sensitivity analysis

From the perspective of a biogas station, the financial performance is shown mainly from the annual balance between cost and benefit. The calculation shows that if use the LPG substitution price the biogas station have surplus. If applying the farmed regulated price the biogas station will has limited surplus with comprehensive utilization and did not have surplus in the case of without comprehensive utilization.

Table 6.11 Financial analysis from the perspective of biogas s	tation
--	--------

Scheme 1: LPG substitution price and with comprehensive utilization	7,709
Scheme 2: Farm regulated price and with comprehensive utilization	986
Scheme 3: LPG substitution price and without comprehensive utilization	6,079
Scheme 4: Farm regulated price and with comprehensive utilization	-644

6.6 Social Environmental Benefit

6.6.1 Environmental benefit and GHG abatement

The construction of biogas station improve the environmental quality off farm. After the establishment of the biogas station the discharge from the farms reach the nation environment standard.

The biogas station not only treats the dung of the farm itself, but also the residual discharged by Shanghai Haixing livestock farm. As a result it avoids the environment treatment cost.

The biogas station has the benefit of substitution of fossil fuel, such as coal, LPG, electricity.

The biogas station also have positive global environmental benefit. Using the LPG as the baseline the CO_2 abatement from biogas technology will be 3,753 tons of carbon in the life cycle of the biogas station.

6.6.2 Social benefit

Biogas project has many social benefits. It reduces the time needed for cooking, so provides more leisure time for a household. On the other hand, since coal stove is substitute in the case of Xinghuo Farm household does not have to store the coal cake in the corridor of the building, which results in good environmental quality in the corridor and in good neighborhood relationship.

The biogas station also improves the air quality of the farm, so avoids the cost of disease treatment fee and cost from labor loss.

6.6.3 Benefit to women working and health conditions

Since biogas replaces coal, the emission from coal combustion is avoided. It is estimated that the avoided discharge of coal dust is about 10 ton annually, with an avoided cost of 29,000 *Yuan* to move it to place government regulated.

Biogas stove to substitution coal stove also reduce the working intensive of the women on cooking.

Annex

	Table 1. Cash flow (
Year	Initial Investment	Operation cost	Benefit	Net benefit
1	13,720			-13,720
2		767	2,744	1,978
3		767	2,744	1,978
4		767	2,744	1,978
5		767	2,744	1,978
6		767	2,744	1,978
7		767	2,744	1,978
8		767	2,744	1,978
9		767	2,744	1,978
10		767	2,744	1,978
11		767	2,744	1,978
12		767	2,744	1,978
13		767	2,744	1,978
14		767	2,744	1,978
15		767	2,744	1,978
16		767	2,744	1,978
17		767	2,744	1,978
18		767	2,744	1,978
19		767	2,744	1,978
20		767	2,744	1,978
NPV(12%)				755
IRR				13%

Annex Table 1. Cash flow of economic assessment for biogas project (1000Yuan, 1995)

8.4.2 Benefit

In the project the recovered methane-rich gas is used for power generation connected to grid directly. There are two prices of electricity, peak price and valley price. The prearranged electricity prices are shown below:

Peak price for 14 peak hours:	0.63 Yuan/kWh
Non-peak price for 10 hours:	0.17 Yuan/kWh
Average price:	0.438 Yuan/kWh
Annual electricity sale income:	5,106,900 Yuan
Economic analysis price(long-term projection price):	0.80 Yuan/kWh

8.5 Financial and Economic Analysis

8.5.1 Financial and economic analysis

Table 8.6 shows the results of financial and economic analysis of the landfill gas utilization project under basic condition. If taking inflation into account, the FIRR is 12.5%, indicating that the project can bring a little benefit. However, without considering inflation, the FIRR is only 8.3%, which is lower than the standard IRR of 12%.

	Financial		Economic		
	NPV(1,000 Yuan)	IRR (%)	NPV (1,000 Yuan)	IRR (%)	
Without inflation	-3,745	8.37	2,523	31.42	
With inflation considered *	633.2	12.5	4,216	36.38	

Table 8.6 Results of financial and economic analysis of project

*: Inflation rate of operation cost and electricity price is set as 5%.

8.5.2 Sensitivity analysis

Table 8.7 shows the sensitivity analysis of the project. The result indicates that the project is not particularly sensitive for the changes of the investment and operation cost, but comparatively, it is sensitive for the changes of the benefit. Hence the changes of electricity sale and the electricity price will have relatively important influence on the benefit of the project. But it should be noticed that without inflation FIRR is still lower than the standard IRR, even the electricity sale is 10% higher.