

08-January-2007

Kind Attention Chairman, Executive Board UNFCCC

Subject: Clarification on request for review for "Switching fossil fuels in an industrial facility" by Indorama Cement Ltd; (Reference No 0737)

Dear Sir,

This is with reference to the request for review raised by Executive Board members for the project "Switching fossil fuels in an industrial facility" by Indorama Cement Ltd; (Reference No 0737). We are enclosing herewith our clarifications on the comments raised for your consideration.

Thanking you,

Yours sincerely,

B K Sharma Vice President – Finance Indorama Cement Ltd. Mobile: 98190 19113 Tel: 91-22-27896004 Fax: 91-22-27896020 Email: <u>bsharma@indorama.co.in</u>

Reasons for Request 1:

1. In justification of additionality PPs make focus on technological barriers. The technology is indigenous and is being broadly implemented by producers in many objects in India. PPs state that they still have problems with the technology and among them is the quality of BFG which is out of their control. The project started in 2000, but the starting date of fixed crediting period is 01.09.2006.

Therefore it is difficult to assess whether the CDM has been seriously taken into consideration while approving the project and relevantly no evidence is provided on this.

Reply from PP:

PP has envisaged the project activity with CDM consideration. Extract of board meeting referring to the project activity, problems anticipated and CDM benefits has been provided to DOE at the time of validation (attached *annex 1*). PP has been facing the difficulties due to gas fluctuations, low pressure and non-availability of BFG leading to production difficulties & interruptions unlike combustion of LDO in hot air generator in the baseline scenario (details are attached in *annex 5*).

2. In the calculation of the emissions reductions the PP uses formula based on the calorific values of the two types of fuels – LDO (which is displaced) and BFG (which is supplied from the steel plant and combusted in the cement plant). However, neither emissions factor, no content and characteristics of BFG are provided in the PDD, and no project emissions are estimated. Methodology AMS III.B. version 09 states " Project activity direct emissions consist of those emissions related with the use of fossil fuel after the fuel switch", but emissions reductions that are estimated by PPs are equal to the baseline emissions.

Reply from PP:

The composition of BFG (including its NCV) is provided to DOE at the time of validation (test report of BFG is attached as *annex 2*). BFG is a mixture of CO, CO2 and nitrogen with other trace gases. The fuel property comes due to the presence of CO in it. CO% in BFG gas may vary leading to variation in NCV of BFG and PP has included monitoring NCV of BFG in the project monitoring plan. Emission factor for BFG is taken as IPCC default value as suggested in the methodology.

BFG is a waste gas from blast furnace of the steel plant, which other wise is flared (due to the presence of CO in it) from the chimney of blast furnace without any useful purpose. Project emissions due to the burning of BFG are negated by emissions due to flaring of BFG in the baseline. Hence project emissions due to combustion of BFG are same as that of flaring of equivalent quantity of BFG in chimney of blast furnace of steel plant in the baseline. Due to this reason project emissions on account of BFG combustion have not been taken and emission reduction is equal to baseline emissions (due to use of LDO in Hot Air Generator at PP site).¹

¹ This is akin to the biomass based energy generation projects. Biomass burning is not GHG free but GHG neutral. Similarly in the project activity, BFG use is GHG neutral as it is flared in the baseline at the blast furnace in the absence of its utilization as fuel in the project activity. (Refer <u>http://cdm.unfccc.int/UserManagement/FileStorage/AOP0YL09AJQGT6TNOKUOPV6D4S98TB</u>. This is a registered under Type III.B and entails switching from fossil fuel to biomass briquettes)

3. The methodology also says that "The emission baseline is the current emissions of the facility expressed as emissions per unit of output (e.g., kg CO2/kWh)". Output unit emission is not considered at all by the PPs.

Reply from PP:

PP uses BFG for generation of hot air, which is used to dry clinker and slag for production of Portland Slag Cement in the plant. Drying is required to bring the level of moisture in clinker and slag to the acceptable limit for grinding (below 0.5% in the final product). Thus, the output from the project activity is dried clinker and dried slag. The moisture level in Slag and clinker varies at different times (variations are more in case of slag). Due to this variation in moisture levels, LDO consumption per unit of dried slag and dried clinker also varies (unlike power generation or steam generation where it can be estimated very correctly for per unit of power or energy output). So, emission baseline in terms of per unit of output (i.e. dried clinker and dried slag) may not give the most appropriate and conservative estimation on emission reduction in the project activity. This may be also due to the fact that gaseous fuel combustion is more efficient compared to liquid fuel is 0.995). PDD has been modified to include correct baseline description (PDD section B.5) and formulae to estimate baseline emissions based on unit output of dry slag and dry clinker in the project activity (method 1).

However for the conservative and more appropriate estimation of savings in LDO due to project activity, energy values of both BFG and LDO are used as an alternative to above method 1. NCV and quantity of BFG used in the process are part of monitoring plan and are being directly monitored and equivalent amount of LDO displaced is being calculated based on these values and quantity of BFG consumed (method 2). The minimum of the two of method 1 and method 2 is taken as baseline emissions in the project activity (same has been included in revised PDD).

As a justification to above approach, estimation of baseline emissions have been estimated using both the methods separately –

An annual average figure on LDO combustion is taken based on past performance (prior to the start of project activity) for drying of slag and clinker.

As per the past performance data on LDO consumption prior to the project activity, specific LDO consumption per unit of clinker drying was 5.96 L/ MT of dried clinker (year April 1999-March 2000) and for slag it was 17.78 L/MT of dried slag (April 1999-March 2000) and 5.72 L/ MT of dried clinker (year April 2000-September 2000²) and 15.2 L/ MT of dried slag (year April 2000-September 2000²) and 15.2 L/ MT of dried slag (year April 2000-September 2000²). This difference in specific LDO consumption for clinker and slag is due to different levels of moisture in input clinker.

Based on this data (using average figure for the above period), estimated LDO saving for the sample year 2004-05 (Clinker production 280499 tonnes and slag production 345047 tonnes) comes out to be 1624 KL for clinker drying and 5462 KL for slag drying. Equivalent emissions from the equivalent LDO consumption are 17760 tCO2e (*annex 6*), which are more than those estimated based on energy value of BFG and LDO (i.e. 10600 tCO2e) in the PDD for the same year. So, to be conservative and also for more appropriate estimation of emission reduction due to project activity, energy values have been used.

It may be noted the cost of BFG to PP is much higher than the gains achieved through sale of CER on account of BFG use (*annex 4*). This suggests that the possibility of BFG overuse (over and above that is required for achieving required moisture levels in clinker and slag) in the project

² Period prior to the start of BFG based Hot Air Generator in the project activity.

activity is ruled out. This is also to show that the emission reduction in the project activity is conservative, transparent and real.

4. The methodology states that "The project boundary is the physical, geographical site where the fuel combustion affected by the fuel-switching measure occurs." The steel factory, from which the BFG is supplied thus avoiding BFG emissions there, should be involved in the project boundary as far as its fuel combustion could be affected by fuel switching measures. In description of project boundary from PDD it is said that "the project boundary includes the production facility, hot air generator (HAG), auxiliary equipment & machinery, piping and allied systems". In the allied systems could be implied the steel factory but nothing is monitored there (except of bills for BFG) and it is several times stated that the steel factory is out of PPs control and even the quality of BFG totally depends from steel factory owners.

Reply from PP:

The type of fuel use in the blast furnace in the steel plant would not affect the project activity in any way. The emission reduction will happen irrespective of the fact, whether or not steel plant uses solid, liquid or gas fuel. The emission reduction happens due to the avoidance of LDO use in the plant of PP in the baseline. The fate of BFG in the project activity is same as it was in the baseline (i.e. flaring before release into atmosphere). The steel plant is not included in the project boundary and metering of BFG is done at the PP site too.

5. According to the methodology "Monitoring shall involve: (a) Monitoring of the fuel use and output for an appropriate period (e.g., a few years, but records of fuel use may be used) prior to the fuel switch being implemented". Still, monitoring plan from the PDD doesn't consider at all the fuel use (LDO) and the output for an appropriate period prior to the fuel switch being implemented as it is requested by the methodology. It doesn't consider the fuel use and the output after the fuel switch has been implemented.

Reply from PP:

Data on LDO use in drying of clinker and slag is available prior to the project activity (for year April 1999 to March 2000 and April 2000 to September 2000). (Refer *annex 3*).

The output from the project activity is dried clinker and dried slag. Input clinker and input slag have different levels of moisture at different times and hence result into varying specific LDO consumption for unit production of dried clinker and dried slag (unlike power generation or steam generation where it can be estimated very correctly for per unit of power or steam output).

Hence, estimation of emission reduction in the project activity based on unit production of dried clinker and dried slag may give incorrect figure. As described above, based on the unit output of dried clinker and dried slag, estimation of emission reduction comes out to be more than those estimated based on energy values of LDO and BFG. So, for conservative and more appropriate estimation of emission reduction in the project activity, energy values of BFG and LDO have been used. (Refer *annex 6*)

PPD has been modified to include monitoring of output i.e. dried slag and dried clinker in the project activity. Baseline emissions shall be estimated based on the two methods (one based on unit output and other based on energy values of BFG and LDO) and most conservative estimate shall be taken for emission reduction in the project activity.

Reasons for Request 2:

1. Monitoring plan from the PDD doesn't consider at all the fuel use and the output for an appropriate period prior to the fuel switch being implemented as it is requested by the methodology. It doesn't consider the fuel use and the output after the fuel switch has been implemented.

2. According to the definition from the methodology applied "the project boundary is the physical, geographical site where the fuel combustion affected by the fuel-switching measures occurs". Therefore, the steel factory should be included in the project boundary as far as its fuel combustion could be affected by fuel switching measures. In description of project boundary from PDD it is said that "the project boundary includes the production facility, hot air generator (HAG), auxiliary equipment & machinery, piping and allied systems". In the allied systems could be implied the steel factory but nothing is monitored there (except of bills for BFG) and it is several times stated that the steel factory is out of PPs control and even the quality of BFG totally depends from steel factory owners.

3. The methodology states that "The emission baseline is the current emissions of the facility expressed as emissions per unit of output (e.g., kg CO2/kWh)". Output unit emission is not considered at all by the PPs.

Reasons for Request 3:

(a) The project started in 2000, but the starting date of fixed crediting period is 01.09.2006. However, there are no

evidences that CDM has been seriously taken into consideration while approving the project.

(b) In the calculation of the emissions reductions the PP uses formula based on the calorific values of the two types of fuels – LDO (which is displaced) and BFG (which is supplied from the steel plant and combusted in the cement plant). However, neither emissions factor, no content and characteristics of BFG are provided in the PDD, and no project emissions are estimated. Methodology AMS III.B. version 09 states " Project activity direct emissions consist of those emissions related with the use of fossil fuel after the fuel switch", but emissions reductions that are estimated by PPs are equal to the baseline emissions.

(c) The methodology also says that "The emission baseline is the current emissions of the facility expressed as emissions per unit of output (e.g., kg CO2/kWh)". Output unit emission is not considered at all by the PPs.

(d) The methodology states that "The project boundary is the physical, geographical site where the fuel combustion affected by the fuel-switching measure occurs." The steel factory, from which the BFG is supplied thus avoiding BFG emissions there, should be involved in the project boundary as far as its fuel combustion could be affected by fuel switching measures. In description of project boundary from PDD it is said that "the project boundary includes the production facility, hot air generator (HAG), auxiliary equipment & machinery, piping and allied systems". In the allied systems could be implied the steel factory but nothing is monitored there (except of bills for BFG) and it is several times stated that the steel factory is out of PPs control and even the quality of BFG totally depends from steel factory owners.

(e) According to the methodology "Monitoring shall involve: (a) Monitoring of the fuel use and output for an appropriate period (e.g., a few years, but records of fuel use may be used) prior to the fuel switch being implemented". Still, monitoring plan from the PDD doesn't consider at all the fuel use (LDO) and the output for an appropriate period prior to the fuel switch being implemented

as it is requested by the methodology. It doesn't consider the fuel use and the output after the fuel switch has been implemented.

Document proof for CDM consideration

(50 9001 : 2000 COMPANY

Extract of Minutes of the Meeting of the Board of Directors of Indorama Cement Limited held at 11.00 a.m. on Saturday, 12th February, 2000 at 207, Vardhaman Chambers, Sector 17, Vashi, Navi Mumbai - 400 705.

B F Gas project

Chairman informed the Board that they are working on the project of tapping Blast Furnace Gas from M/s Ispat Metallics India Ltd. (IMIL) for substitution in place of LDO for the operation of plant. The matter was discussed in the meeting and the Board is of the opinion that the use of BFG from IMIL would need investments in equipments/ piping etc at the site of Hot Air Generator (HAG). Also, HAG would need additional arrangements to use BFG along with LDO in dual mode. There are also some technological issues vis-à-vis BFG availability and quality, which is not under company's control. The project carries inherent investment risk due to these reasons. However, considering Clean Development Mechanism under Kyoto protocol backed revenue and its positive impact on the environment, the board decides to go ahead with the project of substituting BF Gas in place of LDO to the extent possible by setting up dual firing system. It was further decided that necessary actions should be taken in this regard by the Executive Director in consultation with company's technical people.

CERTIFIED TRUE COPY For INDORAMA CEMENT LTD.

Company Secretary

INDORAMA CEMENT LIMITED 207, Vardhaman Chambers, Sector - 17, Vashi, Navi Mumbai - 400 705, India.

Recent BFG TEST REPORT

TEST REPORT

Report No. : CA:GL:6120016267

JOE No: 612107597

Control No. 6125016377

3

DATE 13.12.200

SAMPLE DRAWN BY SGS INDIA PVT. LTD.

SAMPLE IDENTIFIED COMPANY NAME ADDRESS

ON A/C OF SAMPLING RECD ON TEST START DATE TEST END DATE

B.F. GAS M/S. INDORAMA CEMENT LIMITED. 207, VARDHAMAN CHAMBER, SECTOR-17 VASHI, NAVI MUMBAI - 400 705 ENVI, SGS - THANE. SAMPLING DESCRIPTION SAMPLE RECEIVED IN A SEALED BLADDER 13.12.2006 13.12.2006 13.12.2006

SL.NO.	PARAMETERS	RESULTS
1.	CARBON MONOXIDE (CO)	29.4%
2.	CARBON DI OXIDE (CO2)	<0.2%
3.	HIDROGEN (H ₂)	0.8%
4.	OXYGEN (O ₂)	19%
5	CALORIFIC VALUE	920.52 K cal/Nm ³

""End of Report

A. A. A. Checked by

A. A. Dutte

Chemist cum QAG

For and on behalf of SGS India Private Ltd.

Dr. N. Chosh

Assi, Manager - Laboratory

Page 1 of 1

Recent LDO TEST REPORT

TEST REPORT

Sample No. : T			
JUE NO. : 013101076		Report No.:6135002228	
		t drawn by SGS ind	
AMPLE SUBMITTED	AND IDENTIFIED B	Y SUPPLIER AS : LIG	IT DIESEL OIL
OMPANY NAME	INDORAMA CEM	ENT LIMITED.	
ADDRESS	207, VARDHAMA	N CHAMBERS,, SECTO	DR 17, VASHI,
YTI	NAVI MUMBAI-40	0705	
SAMPLING METHOD	N.A.		
SAMPLE DESCRIPTION	SAMPLE OF LDC)	
AMPLE CONDITION	UNSEALED PLAS	TIC BOTTLE	
AMPLE QTY.	500 ML.		
ETTER DATE	28-11-2006.		
IARKS	UNMARKED		
SAMPLE RECD ON	04-12-2006		
EST START DATE	05/12/2006		
EST END DATE	05/12/2006		
TES	TS	PROTOCOL	RESULT
GROSS CALORIFIC		IS 1448:PART 7 :20	04 10830 Cal./g.

***** End of Report ****

This is a computer generated report hence signature is not available

Page 1 of 1

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf or available upon request and accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated and such sample(s) are retained for 30 days only unless otherwise stated. This Test Report cannot be reproduced, except in full, without prior written approval of the Company. The information stated in this report (or Certificate)is derived from the results of inspection or testing procedures carried out in accordance with the instructions of our cleans, and/or our assessment of such results on the information stated from the results of inspection or testing procedures carried out in accordance with the instructions of our cleans, and /or our assessment of such results on the information state of the results of the results of the company.

SGS India Pvt. Ltd. Laboratory. A-77, SGS House, Wagle Ind. Area, Near Pipeline, Thane Phone : 5821335,0777,03667 Fax : 5823636

Regd & Corp. Off : SGS House, 4B, A.S. Marg, Vikhroli (West), Mumbai-400083. Tel : (022) 25798421 to 28 Fax : (022) 25798431 to 35 www.sgs.com

Member of the SGS Group

Plant production and LDO consumption in the baseline prior to the project activity

Month-Year	Slag Production	LDO C	onsumed
	MT	Litres	L/MT
Apr-99	0	0.0	0.00
May-99	0	0.0	0.00
Jun-99	0	0.0	0.00
Jul-99	84	1323.0	15.75
Aug-99	2407	78494.0	32.61
Sep-99	0	0.0	0.00
Oct-99	670	24360.0	36.36
Nov-99	1345	32432.0	24.11
Dec-99	1013	18139.0	17.91
Jan-00	2780	32305.0	11.62
Feb-00	2950	44178.0	14.98
Mar-00	4556	49739.0	10.92
Total	15805	280970	17.78

Fuel consumption in slag drying

Month-Year	Slag Production	onsumed	
	MT	Litres	L/MT
Apr-00	6234	77943	12.50
May-00	8699	97348	11.19
Jun-00	6715	91785	13.67
Jul-00	7467	133092	17.82
Aug-00	10548	177773	16.85
Sep-00	9349	167154	17.88
Total	49012	745095	15.20

Month-year	Clinker Production	LDO Con	LDO Consumed			
	МТ	Litres	L/MT			
Apr-99	0	0	0.00			
May-99	0	0	0.00			
Jun-99	7205	62733	8.71			
Jul-99	7500	60084	8.01			
Aug-99	12539	112316	8.96			
Sep-99	10191	57644	5.66			
Oct-99	22187	136322	6.14			
Nov-99	24753	131279	5.30			
Dec-99	24355	121214	4.98			
Jan-00	22566	141067	6.25			
Feb-00	21030	108221	5.15			
Mar-00	23869	120007	5.03			
Total	176195	1050887	5.96			

Fuel consumption in clinker grinding

Total	391678	2238580	5.72
Sep-00	16673	107095	6.42
Aug-00	18410	110563	6.01
Jul-00	12546	85901	6.85
Jun-00	15107	84536	5.60
May-00	19136	96985	5.07
Apr-00	17038	80825	4.74

Comparison of BFG cost to PP and benefit accruing through equivalent CER sale

Parameter	Value	Source
Cost of BFG to PP	Rs. 0.31/ Nm3 of BFG	Gas Invoice from Steel Plant to PP; dated 23/11/2005 (attached)
Benefits from CER sale	Rs. 0.12/ Nm3 of BFG*	# Based on IPCC value on emission factor and oxidation
CER generation from BFG use		factor of LDO.
NCV of BFG = 700 kcal/ Nm3 NCV of LDO = 9000 kcal/ L		
LDO saving = 700/ 9000 L/ Nm3 of BFG		
Emission Factor of LDO = 2.76 [#] tCO2e/ KL		
Emission Reduction = 700/ 9000 * 2.76/ 1000 tCO2e/ Nm3 of BFG		
= 0.000215 tCO2e/ Nm3		
Revenue from CER (@10 Euro at Rs. 56/ Euro) = 0.000215 *10 * 56		
= Rs. 0.12/ Nm3 of BFG		

*The revenue generation from the CER sale on account of BFG overuse (above that is required for useful purpose in drying of clinker and slag to the desired levels) is much below the cost of BFG to PP. Hence possibility of overuse (above that is adequately required) is ruled out.

ISPAT INDUSTRIES LIME Pactary Castagramm, Dreamter Dowl, Taide v, Dist TAX INVOICE / INVOI Involce for removal for Exclasible goods from factory or wa	Raigad, PIN - 402 107 (Methicanbira) Ph. ICE Cen.	Ex. Reg. NO	AAACi 62		(Stock Transi	. FOR BUYER ar / Captive use / related idependent buyer etc.)
Address: Casabiance, Plot No. 45, Sec No. 11, C.E.D. Beistur-400 614., I Tatign: -PEN - I Viralian -KHOPCU Commissionerate -RAIGAD	I Plot No. 1, Sec. 17, Khandeshwar, al - PIN - 410 206.	Frank Citing	025		Authenticated	(Jaustaine)
SAP INV. NO. : 3550000255 BILL DOC NO. : 1111000245	TIN NO.	DATE	23.11	.2005		XIII
Sold To. INDO RAMA CEMENT LTD 207, VARDHAMAN CHAME VASHI NAVI MUMBAI - 400705 Maharashtra INDO RAMA CEMENT LTD VILLAGE - KHAR KARAVI TALUKA PEN DIST: RAIGAD - Maharashtra ECC NO. AA Name of Excleable Commodity Fariff Heading No. Rate of Duty : Exemption Notiff No. Blast furnace Top 2803 00 90 0.00 Cess 2.00	BERS, SEC.17, PO WADKHAL, MACI2389DXM001	D. O. No. : Purchaso Order IRP/LR No. : Mode of Transpo Veh, Reg. No. : Transportér Nai Terms of Paymai Bank & Branch * L. C. No. Cen. Ex. Reg. Mc Party's C.S.T. No. Party's C.S.T. No. Party's C.S.T. No. Party's C.S.T. No. Party's C.S.T. No. M.S.T. REGN. NC.	No.: 1300 0000 rt: ms nt: 1009 A & ECC No H 6293 EX (/ Date / Date	Advance AAACI 6293 M oot 40	Date : Date : Date : EXM 001 2107/C/48 D 2107/S/370 (23 DT.1=-58	31.10.2005 05.05.2003 23.11.2005 TD: 27.01.1997 DTD: 23.01.1997
Description & Specificat	ion of Goods		Units of Qiy.	Total Qty. M.T.	Ratu Rs.	Assessable Value
Blast furnace Top Gas-BF Gas Despatched under Not.No 23/2004 C	E Dt.09.07.2004		NM3	77,131.0	0 0.31	23,910.01
Total excise duty payable : Rs. (in words) UPEES ZERO ONLY Monthly Payment of Excise Duty as per Rule 4 of Excise Ru Date & Time of Issue of Invoics Date & Time of removal 23.11.2005	09:38:57	Amount	L	. Tot Ad Tot	d Freight Isl'Victus Isl Docus Dufy Isl Cess K/ MST/CST	0.00 23,910.61 0.00 0.00 23,910.61
Grand Total (in words) RUPEES TWENTY-THREE THOUSAND NINE HU	NDRED TEN AND PAISE S	XTY-ONE ONLY	Y	G	rand Totai	23,010.61
Certified that particulars given above are true open and correct and the amount indicated represents of	WE HEREBY DECLARE THAT BALL OF OM THE WHOLE OF SALES TAX IN DAY ENTITLEMENT BEAKING NO. 496107 D AS SUCH MY JOUR INAMEDIATE FL V SET OFF IN RESPECT OF THIS	OUR HANDS ON ACCO -5-E-3/MEGA - 1478 D IRCHASER SHALL NO	OUNTOFITIE I OULY GRANTER IT BE ENTITLE DER ANY PRO	DERTIFICATE DITO ME / UB IDITO OLAIN	For legal h	ndustries Limited

Problems faced with BFG use

Month		Gas lation	Low pressure		Non availability		Poor burning	
	Freq	Hrs.	Freq	Hrs.	Freq	Hrs.	Freq	Hrs.
Apr. 2001			1	0.20	1	14.62		
May. 2001			1	0.08				
June 2001			1	0.08				
July 2000					2	21.92		
Aug. 2001			6	0.60	1	7.53		
Sep. 2001			5	0.57	1	10.55		
Oct. 2001	1	0.17						
Nov. 2001					3	14.50		
Dec. 2001	1	0.43			3	17.72		
Jan. 2002	1	0.17						
Feb. 2002								
Mar. 2002	16	0.9						
Total	19	1.67	14	1.53	11	86.84		

Details of problems faced in using of B.F.Gas during 2001-2002

Details of problems faced in using of B.F.Gas during 2002-2003

Month					Non av	Non availability		Poor burning	
	fluctu	ation							
	Freq	Hrs.	Freq	Hrs.	Freq	Hrs.	Freq	Hrs.	
Apr. 2002	17	1.27	-	-	1	8.38	-	-	
May. 2002	22	1.92	-	-	1	4.08	-	-	
June 2002	11	0.78	-	-	-	-	-	-	
July 2002	14	1.27	-	-	-	-	-	-	
Aug. 2002	5	0.25	-	-	4	47.96	-	-	
Sep. 2002	20	2.85	-	-	3	34.8	-	-	
Oct. 2002	37	3.33	-	-	3	29.45	-	-	
Nov. 2002	19	1.92	-	-	1	0.83	-	-	
Dec. 2002	7	0.42	-	-	1	28.48	-	-	
Jan. 2003	43	3.46	-	-	1	9.47	-	-	
Feb. 2003	118	9.65	-	-	-	-	-	-	
Mar. 2003	71	6.05	-	-	1	11.0	-	-	
Total	384	33.17	-	-	16	174.45	-	-	

Month	B.F.Gas	fluctuation	Low pr	essure	Non availability		Poor b	urning
	Freq	Hrs.	Freq	Hrs.	Freq	Hrs.	Freq	Hrs.
Apr. 2003	5	0.78	-	-	-	-	-	-
May. 2003	-	-	-	-	-	-	-	-
June 2003	2	0.46	-	-	6	107.27	-	-
July 2003	1	0.15	-	-	4	51.2	-	-
Aug. 2003	3	0.36	-	-	2	13.67	-	-
Sep. 2003	2	0.22	-	-	6	21.1	-	-
Oct. 2003	10	1.24	3	0.47	1	6.22	-	-
Nov. 2003	19	2.4	2	0.37	3	24.05	16	2.27
Dec. 2003	50	6.57	3	0.38	6	43.75	-	-
Jan. 2004	15	1.65	19	2.32	-	-	-	-
Feb. 2004	20	3.15	1	0.11	-	-	-	-
Mar. 2004	18	2.71	2	0.43	-	-	-	-
Total	145	19.69	30	4.08	28	267.26	16	2.27

Details of problems faced in using of B.F.Gas during 2003-2004

Details of problems faced in using of B.F.Gas during 2004-2005

Month	B.F.Gas	fluctuation	Low pr	essure	Non availability		Poor burning	
	Freq	Hrs.	Freq	Hrs.	Freq	Hrs.	Freq	Hrs.
Apr. 2004	6	0.97	-	-	-	-	-	-
May. 2004	5	0.53	1	0.25	-	-	-	-
June 2004	-	-	-	-	2	11.93	-	-
July 2004	6	1.41	-	-	2	19.47	-	-
Aug. 2004	1	0.10	-	-	1	11.52	-	-
Sep. 2004	2	0.17	-	-	-	-	-	-
Oct. 2004	4	0.33	-	-	-	-	-	-
Nov. 2004	6	1.10	-	-	-	-	-	-
Dec. 2004	2	0.45	-	-	-	-	-	-
Jan. 2005	1	0.07	1	0.12	-	-	-	-
Feb. 2005	-	-	2	0.18	-	-	-	-
Mar. 2005	-	-	-	-	-	-	-	-
Total	33	5.13	4	0.55	5	42.92		

Details of problems faced in using B.F. Gas during 2005-2006

Month	B.F. Gas fluctuation		Low pressure		Non availability		Poor burning	
	Freq	Hrs.	Freq	Hrs.	Freq	Hrs.	Freq	Hrs.
Apr. 2005	1	0.17	-	-	1	2.10	-	-
May. 2005	-	-	-	-	-	-	-	-
June 2005	-	-	-	-	-	-	-	-
July 2005	2	0.37	-	-	10	84.44	-	-
Aug. 2005	-	-	-	-	1	14.50	-	-
Sep. 2005	-	-	-	-	7	277.11	-	-
Oct. 2005	-	-	1	3.33	9	57.65	-	-
Nov. 2005	-	-	-	-	3	22.25	-	-
Dec. 2005	2	0.59			6	31.72	-	-
Total	5	1.13	1	3.33	37	489.77	-	-

Estimation of Emission Reduction based on AMS-III.B

The emission reduction achieved by the project activity will be calculated as the difference between the baseline emissions and the project emissions.

Based on the past performance of Hot Air Generator in the baseline for slag and clinker drying, following is the rate of LDO consumption –

Output – Raw Material	Specific LDO o	Average Value taken for estimation of baseline emissions	
Month-Year>	April 1999-March 2000	April 2000-	April 1999- September
		September 2000	2000
Slag	17.78 L/ tonne	15.20 L/ tonne	15.83 L/ tonne
Clinker	5.96 L/ tonne	5.72 L/ tonne	5.79 L/ tonne

Estimation for baseline emissions -

Parameter	Value	Source
Emission Factor – LDO	20.2 tC/ TJ	IPCC default for LDO
NCV – LDO	9000 kcal/ L	Lab test value
Oxidation Factor	0.99	IPCC default for LDO
Coefficient of Emission - LDO	2.764 tCO2e/ KL	Calculated

Raw Material	Value	LDO consumption – Baseline	Baseline Emissions
Quantity of Clinker produced (2004-05)	280499 tonne	280499 *5.79/ 1000 = 1624 KL	1624* 2.764 = 4489 tCO2e
Quantity of Slag produced (2004-05)	345047 tonne	345047 * 15.83/ 1000 =5462 KL	5462*2.764 = 15099 tCO2e
Quantity of LDO consumed (for both clinker and slag drying) in project year (2004-05)	662.37 KL	662.37 KL	- 662.37 *2.764 = - 1831 tCO2e
Baseline Emissions			17760 tCO2e/ annum*

*The emission reduction estimated based on specific fuel consumption in the baseline for unit output (dry slag and dry clinker) is more than that estimated based on energy values of LDO and BFG and quantity of BFG used (10600 tCO2e). Hence estimation of emission reduction using the energy values is more appropriate and more conservative.