CDM Monitoring Report Of "Methane Recovery and Power Generation in a Distillery plant" By GMR Industries Ltd. (GIDL) UNFCCC0505 Version 1.4 # **Monitoring Period:** From: 01/04/2007 To: 30/09/2007 (both days included) GMR Industries Limited (sugar division) Sankili, Regidi, Amadalavalasa Mandal, Srikakulam District – 532440 Andhra Pradesh, India CERs claimed in Second Monitoring Report 9550 ## **Table of Contents:** - 1. Introduction - 2. Reference - 3. Description of Project activity - 4. Baseline Methodology - 5. Monitoring Methodology and plan - 6. GHG Calculations Appendices $-1 \sim 17$ ## 1. Introduction The purpose of monitoring report is to calculate and clearly demonstrate the GHG emission reduction quantity achieved by this project for periodic verification. The monitoring report shall cover the activity from **01/04/2007 to 30/09/2007** as second monitoring period. First monitoring report covered the activity from 01/10/2006 to 31/03/2007 and was subject to EB review EB 35 Para 82g. Starting date of project activity: 01/12/2003 Project Commissioning date: 01/06/2005 Project Registration Date: 29/09/2006 Starting date of crediting period (first 7 year crediting period): 01/10/2006 ### 2. Reference ### **<u>Title:</u>** Methane Recovery and Power Generation in a distillery plant. Version: 1.2 Date of completion of the Monitoring Report: 10/05/2008 #### **Approved Baseline Methodology:** The project has two components and they confirm to following small scale approved baseline methodologies. - a. Type IIIH: Methane recovery in wastewater treatment. - b. Type ID: Grid connected renewable electricity generation. #### **Approved Monitoring Methodology:** The project has two components and they confirm to following small scale approved monitoring methodologies. - a. Type IIIH: Comprises Methane recovery from spent wash treatment facilities. - b. Type ID: Comprises renewable energy generation units that displaces electricity based on fossil fuel fired generating stations. #### **Project Design Document:** Methane recovery and power generation in a distillery plant" by GMR Industries Ltd. (GIDL); UNFCCC reference number - 0505 Version: 1.3 Date: 04/09/2006 ## 3. Description of Project Activity #### a. General Description: This project activity is based at the distillery unit of integrated sugar complex of GMR Industries Ltd. (GIDL - Sugar Division) at Sankili village, Srikakulam District in the State of Andhra Pradesh. The company belongs to GMR group. The distillery has implemented ISO-9001:2000: system. The sugar division of the GMR Industries Ltd. (GIDL) owns a distillery with a capacity of 40 KLPD. The raw material to the distillery is molasses from the sugar plant. The major products from the distillery are Rectified Spirit (RS), Extra Neutral Alcohol (ENA) and Ethanol. The plant has modern Molecular Sieve Dehydration System. The plant is having zero pollution discharge. The Spent-Wash generated from the distillery is high in Bio-chemical Oxygen Demand (BOD)/Chemical Oxygen Demand (COD) content. The approx. quantity of Spent-Wash generated from the process is ~400 m3 per day. The BOD level of the Spent-Wash is in the range 55000-60000 mg/l and the COD is in the range of 130000-150000 mg/l. As per the norms of State Pollution Control Board and Central pollution Control Board (CPCB) in India this high BOD/COD Spent-Wash can not be discharged without proper treatment. The limit of BOD of the Spent-Wash for disposal in surface water is 30 mg/l and for disposal on land is 100 mg/l. In normal course distilleries in India adopt open lagoons treatment system for meeting the pollution control standards of BOD/COD of the Spent-Wash before its discharge. But in open lagoon system Methane, a potent GHG, is generated due to the anaerobic conditions which escape into atmosphere and there is no control or capturing involved. This project activity from GIDL entails treatment of this high BOD/COD Spent-Wash anaerobically in a closed digester and capturing the Methane generated in a controlled manner. The Methane captured is combusted in a boiler for steam generation and further to generate power through a turbo-generator. The project activity also includes combustion of other GHG natural biomass residue fuels such as rice-husk to supplement biogas fuel in the boiler. The capacity of the power generation plant is ~1.0 MW. #### b. Technical Description of Project activity: #### Location details: The plant is located at the distillery unit of GIDL (Sugar Division) at village Sankili of Regidi Mandal of Srikakulam District in Andhra Pradesh, India. The plant site is about 142 km from the nearest airport of Visakhapatnam on National Highway NH-5. The geographic location in which the project activity is located is depicted in the map below: # **Technical Details:** ## **Turbine Specification:** | Steam turbine Model | PRSB 150 | |---------------------|-----------------| | Inlet Steam pr. | 43 ata | | Inlet Steam Temp. | 425 Deg C | | Exhaust Steam Pr. | 4 ata | | Max. Steam flow | <u>10.5 TPH</u> | | Turbine Rated Speed | 8142 RPM | | Rated Power | 1000 kW | | No of stages | <u>05</u> | ## **Boiler Specification:** | <u>Make</u> | Cheema Boilers ltd. | |-------------------------|---------------------| | Capacity | <u>10.5 TPH</u> | | Boiler Type | Power Pack-FBC | | Superheated steam pr. | 44 kg/cm2 | | Superheated steam temp. | 430 +- 5 Deg C | ## ESP: | <u>Make</u> | Thermax Ltd. | |-------------|--------------| | <u>Model</u> | <u>SC-9-16-16G-</u>
(3X1.25)-1.2P | |------------------|--------------------------------------| | Number of fields | <u>3</u> | ## 4. Baseline Methodology The project activity helps in GHG emission reduction in two ways- - 1. Methane emission reduction through its controlled recovery in an anaerobic digestion plant - 2. Reduction of emissions from fossil fuel based grid power by biogas and other biomass combustion in power generation plant The project is a small scale CDM project activity and is based on Appendix B (Version No. 07 dated 28 November 2005) of the simplified modalities and procedures for small-scale CDM project activities. The project activity conforms to the following categories- | Category | Technology/ measure | |-----------------------------|---| | TYPE IIIH: Methane | Comprises Methane recovery and combustion from waste | | Recovery in Wastewater | water treatment facilities. | | Treatment | | | | | | Reference: version 1, Scope | | | 13, 15; dated 03 March 2006 | | | TYPE ID: Grid connected | Comprises renewable energy generation units that | | renewable electricity | displaces electricity based on at least fossil fuel fired | | generation | generating stations. | | | | | Reference: Version 8, Scope | | | 1; dated 03 March 2006 | | Estimation of Grid Emission factor has been done ex ante in PDD. The GEF calculation is done in Appendix -16. ## 5. Monitoring Methodology and Plan The project is a small scale CDM project activity and is based on Appendix B (Version No. 07 dated 28 November 2005) of the simplified modalities and procedures for small-scale CDM project activities. The project activity conforms to the following categories- | Project Category | Criteria | |-------------------------|---| | TYPE IIIH : Methane | Comprises Methane recovery from Spent-Wash treatment | | Recovery in Wastewater | facilities. | | Treatment | | | TYPE ID: Grid connected | Comprises renewable energy generation units that | | renewable electricity | displaces electricity based on fossil fuel fired generating | | generation | stations | # 6.1 The data being monitored as a part of project activity are as follows: | ID
number | Data Source | Data variable | Data unit | Measured (m), calculated © or estimated (e) | Recording frequency | Proportion of data to be monitored | How will
the data be
archived?
(electronic/
paper) | For how long is archived data to be kept? | Comment | Reference | |--------------|---------------|---|----------------|---|---------------------|------------------------------------|--|---|---|-------------| | 1.1 | Plant Data | Flow of Spent-
Wash in digester | m ³ | m | Daily | 100% | Paper | Credit
period + 2
yrs | | Appendix -1 | | 1.2 | Lab test data | Chemical Oxygen
Demand of
untreated Spent-
Wash into the
digester | mg/l | e | Daily | 100% | Paper | Credit
period + 2
yrs | Standard "Reflux method" is used for estimation of COD of spent wash following Central Pollution Control Board norms | Appendix -2 | | 1.3 | Lab test data | Chemical Oxygen
Demand of treated
water from digester | mg/l | e | Daily | 100% | Paper | Credit
period + 2
yrs | Standard "Reflux method" is used for estimation of COD of treated water following Central Pollution Control Board norms | Appendix -3 | | 1.4 | Plant data | Biogas flow into boiler | m3 | m | Daily | 100% | Paper | Credit
period + 2
yrs | | Appendix -4 | |------|---------------|--|----------|---|---------|------|-------|-----------------------------|--|--------------| | 1.5 | Lab test data | %CH4, Volumetric content of Methane in biogas | % | m | Daily | 100% | Paper | Credit
period + 2
yrs | Methane concentratio n in biogas is measured using "Gas Chromatogr aph- Thermal Conductivity Detector" | Appendix -5 | | 1.6 | Plant data | Pressure of biogas | mm. WC | m |
Daily | 100% | Paper | Credit
period + 2
yrs | | | | 1.7 | Plant data | Temp. of biogas | Deg C | m | Daily | 100% | Paper | Credit period + 2 vrs | | Appendix -6 | | 1.8 | Plant data | Gross Electricity
generated in the
power plant | kWh | m | Daily | 100% | Paper | Credit period + 2 vrs | | Appendix -7 | | 1.9 | Plant data | Auxiliary Electricity Consumption | kWh | m | Daily | 100% | Paper | Credit period + 2 yrs | | Appendix -8 | | 1.10 | Plant data | Net electricity generation | kWh | С | Daily | 100% | Paper | Credit
period + 2
yrs | | Appendix -9 | | 1.11 | Plant data | Quantity of fossil
fuel i combusted in
boiler | Tonnes | m | Monthly | 100% | Paper | Credit
period + 2
yrs | | Appendix -10 | | 1.12 | Lab test data | Calorific value of fossil fuel i combusted | kcal/ kg | e | Monthly | 100% | Paper | Credit
period + 2
yrs | | Appendix -11 | | 1.13 | Plant data | Power consumed in equipment in digester plant | kWh | т | Daily | 100% | Paper | Credit period + 2 yrs | | Appendix -12 | | 1.14 | Plant data | Quantity of
digester solid
residues generated | tonnes | m | Monthly | 100% | Paper | Credit
period + 2
yrs | | Appendix -13 | |------|---------------------------------------|--|-----------------|---|---------|------|-------|-----------------------------|---|--------------| | 1.15 | Plant data | Quantity of
digester solid
residue treated by
composting | tonnes | т | Monthly | 100% | Paper | Credit
period + 2
yrs | Total quantity generated of solid residues in digester goes to composting plant | Appendix -14 | | 1.16 | Plant data/
IPCC default
values | Coefficient of
emission for fossil
fuel i combusted in
boiler | tCO2e/
tonne | c | Monthly | 100% | Paper | Credit
period + 2
yrs | Refer
Section
E.1.1 for
detail
formula | Appendix -15 | | 1.17 | Plant data | Quantity of
biomass residues
combusted in
boiler for power
and steam
generation | Tonnes | т | Monthly | 100% | Paper | Credit
period + 2
yrs | From
transportati
on records /
purchase
invoice
copies | Appendix-17 | #### 5.2 QA/QC Procedures being undertaken for data monitoring | Data
(Indicate table
and ID | Uncertainty level of data
(High/Medium/Low) | Explain QA/QC procedures planned for these data, or why such procedures are not necessary. | |--|--|--| | number e.g.
31.; 3.2.) | | | | Table D.3 (ID numbers from 1.1, 1.4, 1.6, 1.7 | Low | The data will be collected as part of normal plant level operations. QA/QC requirements consist of cross- checking these with other internal company report. | | Table D.3 (ID numbers from 1.2, 1.3 | Low | Data are estimated using standard "Reflux method" as per
Central Pollution Control Board (CPCB), Government of
India norms. | | Table D.3 (ID number 1.5 | Low | Data is measured using "Gas Chromatograph –Thermal Conductivity Detector" method. | | Table D.3 (ID numbers from 1.8- 1.10, 1.11, 1.13 | Low | Data is monitored as part of power plant operation and logs are maintained on daily basis; meters are calibrated as per predefined calibration program | | Table D.3 (ID number 1.12 | Low | Fuel calorific value is lab tested of each stock and a record is maintained to this effect | | Table D.3 (ID numbers from 1.14- 1.15 | Low | Total solid residues from digester are sent to composting plant. A record for residues generated and sent to compost plant is maintained | | Table D.3 (ID numbers 1.16 | Low | Data is calculated based on NCV and IPCC default values for emission factor and oxidation factor for fossil fuels | GIDL's is an ISO-9001:2000 certified plant and it has well defined monitoring, calibration and recording procedures. Calibration of instruments is carried out as per predefined calibration plan. ## 6. GHG Calculations The GHG calculation for this project is divided in two parts, as per the applicability of methodology. ### A. For Methane Avoidance / Spent wash Treatment Part As per the methodology AMS IIIH, the emission reductions for the methane avoidance are calculated as $$ER_y = BE_y - (PE_y + L_y)$$ BE_y = Baseline emissions for spent wash treatment part $PE_y = Project$ emissions for spent wash treatment part L_v = Leakage for spent wash treatment part a) Calculation of BE_y i.e. baseline emissions for methane avoidance BE $_y$ = (Biogas flow into boiler) * (% CH4, Volumetric content of Methane in biogas) * (Methane Density) * GWP_CH4 / 1000 | Variable | Value | Reference | |---|-----------------------|---------------------------| | Biogas flow into boiler (m ³) | Tabulated in Appendix | Appendix - 4 | | % CH4, Volumetric content of
Methane in biogas (%) | Tabulated in Appendix | Appendix – 5 | | Density of Methane | Tabulated in Appendix | Appendix – 6 ¹ | | Global Warming Potential of CH4 | 21 | | BE _y (spent wash treatment) for the six months: | BE _y (t CO2) | | | |-------------------------|---------|--| | Month | Value | | | April-2007 | 4480.7 | | | May-2007 | 4836.98 | | | June-2007 | 4218.5 | | | July-2007 ² | 881.2 | | | August-2007 | 1612.2 | | | September-2007 | 0.0 | | | Total | 16029.6 | | As per the formulae described in registered PDD the baseline estimations are also calculated as below: $$ME_{y,ww,untreated} = Q_{y,ww} * COD_{y,ww,untreated} * B_{o,ww} * MCF_{ww,untreated}$$ | Q _{y,ww} | Appendix - 1 | |----------------------|--------------------------| | COD y, ww, untreated | Appendix - 2 | | B o, ww | 0.21 kg CH4/kg | | | methane | | MCF www, untreated | 0.738 (as per registered | | | PDD) | | Q _{y,ww} | Appendix - 1 | |--------------------|--------------------------| | COD y, ww, treated | Appendix – 3 | | B _{o, ww} | 0.21 kg CH4/kg | | | methane | | MCF www, treated | 0.738 (as per registered | | | PDD) | ¹ 0.68 kg/m³ density is for STP i.e. atmospheric pressure and ambient temperature of 15° C. Temperature and pressure values are monitored to find density at actual temperature and pressure http://encyclopedia.airliquide.com/Encyclopedia.asp?GasID=41#GeneralData ² The distillery and boiler was stopped during the period of 11.07.07 to 03.08.07 due to rain | BE _y (t CO2) (As per Meth) | | | |---------------------------------------|---------|--| | Month | Value | | | April-2007 | 3182.7 | | | May-2007 | 3309.34 | | | June-2007 | 2978.8 | | | July-2007 | 623.9 | | | August-2007 | 1162.0 | | | September-2007 | 0.0 | | | Total | 11256.8 | | b) Calculate PE $_{\rm y}$ i.e. Project emissions for Methane Avoidance Power Consumption in digester plant PE_y (Digester Plant) = (Power Consumption in digester plant) * (GEF) / 1000 | Variable | Value | Reference | |---|-----------------------|---------------| | Power Consumption in digester plant / equipment (KWh) | Tabulated in Appendix | Appendix – 12 | | GEF (t CO2/MWh) | 0.845 | Appendix - 16 | PE_y (spent wash treatment) for six months: | PE _y (tCO2) | | | |------------------------|-------|--| | Month | Value | | | April-2007 | 20.5 | | | May-2007 | 22.1 | | | June-2007 | 18.2 | | | July-2007 | 7.9 | | | August-2007 | 9.5 | | | September-2007 | 0.0 | | | Total | 78.2 | | Project emissions for Dissolved Methane PE $$_{y, \, dissolved}$$ = Q $_{y, \, ww}$ * [CH4] $_{y, \, ww, \, treated}$ * GWP_CH4 | PE _y (tCO2) | | | |------------------------|-------|--| | Month | Value | | | April-2007 | 25.4 | | | May-2007 | 26.2 | | | June-2007 | 22.8 | | | July-2007 | 6.4 | | | August-2007 | 12.5 | | | September-2007 | 0.0 | | | Total | 93.2 | | ## c) Calculate L_y i.e. Project Leakages In this case the leakages are already taken into account, since methane avoidance is taken for only the methane going into boiler. #### **B.** For Power Generation This calculation is based on AMS ID $$ER_y = BE_y - (PE_y + L_y)$$ a) BE_y (Power Generation) = (Gross Electricity Generated in Power Plant) * GEF /1000 | Variable | Value | Reference | |---|-----------------------|---------------| | Gross Power generation in Power Plant (KWh) | Tabulated in Appendix | Appendix – 7 | | GEF (t CO2/MWh) | 0.845 | Appendix - 16 | BE _v (power generation) for the six months: | $BE_{y}(t CO2)$ | | | |-----------------|--------|--| | Month | Value | | | April-2007 | 411.1 | | | May-2007 | 370.5 | | | June-2007 | 236.9 | | | July-2007 | 68.5 | | | August-2007 | 195.6 | | | September-2007 | 0.0 | | | Total | 1282.7 | | b) PE $_{y}$ (Combustion Process) = (Power Consumption in combustion process) * (GEF) / 1000 | Variable | Value | Reference | |--|-----------------------|---------------| | Power Consumption in combustion process (KWh) ³ | Tabulated in Appendix | Appendix – 8 | | GEF (t CO2/MWh) | 0.845 | Appendix – 16 | PE_y (power generation) for six months: | PE _y (t CO2) | | |-------------------------|--| | Month Value | | ³ This power accounts for all the auxiliary consumption, also in situations when there is no gross generation. | April-2007 | 88.0 | |----------------|-------| | May-2007 | 89.1 | | June-2007 | 76.2 | | July-2007 | 26.5 | | August-2007 | 59.2 | | September-2007 | 0.0 | | Total | 325.4 | c) L_y (Fossil fuel combustion) = (fossil fuel consumption) * (Net calorific value of fossil fuel) * (IPCC default oxidation factor) * (Emission factor for subbituminous coal) * 4.187 / 1000000 | Variable | Value | Reference | |--|-----------------------
--------------------| | Quantity of fossil fuel combusted (tonnes) | Tabulated in Appendix | Appendix –10 | | NCV of Fossil fuel | 4514 | IPCC default | | Oxidation factor | 0.98 | IPCC default value | | Emission factor for sub-
bituminous | 96.1 tCO2 / TJ | IPCC default value | ## L_y (fossil fuel usage) for six months: | L _y (t CO2) | | | | | | | | |------------------------|--------|--|--|--|--|--|--| | Month | Value | | | | | | | | April-2007 | 798.9 | | | | | | | | May-2007 | 311.4 | | | | | | | | June-2007 | 71.2 | | | | | | | | July-2007 | 115.7 | | | | | | | | August-2007 | 1181.5 | | | | | | | | September-2007 | 0.0 | | | | | | | | Total | 2516.9 | | | | | | | # Emission reductions can be summarized as below: | | Baseline | Emissions | | Project Emissions | | | | |--------|-----------|------------|----------------------|----------------------|-------------|-----------|------------------------| | Month | Methane | Power | Power Consumption | Power Consumption in | Fossil fuel | Dissolved | Emission
Reductions | | | Avoidance | Generation | in treatment process | combustion process | Combustion | Methane | Reductions | | Apr-07 | 3182.7 | 411.1 | 20.5 | 88.0 | 798.9 | 25.4 | 2661 | | May-07 | 3309.34 | 370.5 | 22.1 | 89.1 | 311.4 | 26.2 | 3231 | | Jun-07 | 2978.8 | 236.9 | 18.2 | 76.2 | 71.2 | 22.8 | 3027 | | Jul-07 | 623.9 | 68.5 | 7.9 | 26.5 | 115.7 | 6.4 | 536 | | Aug-07 | 1162.0 | 195.6 | 9.5 | 59.2 | 1181.5 | 12.5 | 95 | | Sep-07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | | | Total 9 | | | | | | | Appendix-1 Flow of Spent Wash in digester (m³) | Date / | | | | | | | |--------|--------|---------------|--------|--------|--------|--------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 244 | 410 | 400 | 0 | 0 | 0 | | 2 | 384 | 420 | 353 | 230 | 0 | 0 | | 3 | 368 | 432 | 431 | 120 | 0 | 0 | | 4 | 430 | 414 | 390 | 0 | 144 | 0 | | 5 | 400 | 432 | 430 | 0 | 280 | 0 | | 6 | 384 | 430 | 400 | 312 | 0 | 0 | | 7 | 410 | 432 | 408 | 547 | 0 | 0 | | 8 | 410 | 440 | 456 | 622 | 222 | 0 | | 9 | 432 | 425 | 432 | 580 | 396 | 0 | | 10 | 408 | 452 | 410 | 619 | 415 | 0 | | 11 | 400 | 418 | 440 | 0 | 557 | 0 | | 12 | 410 | 432 | 405 | 0 | 437 | 0 | | 13 | 380 | 420 | 400 | 0 | 500 | 0 | | 14 | 432 | 414 | 410 | 0 | 304 | 0 | | 15 | 415 | 425 | 408 | 0 | 240 | 0 | | 16 | 420 | 415 | 432 | 0 | 274 | 0 | | 17 | 430 | 408 | 408 | 0 | 286 | 0 | | 18 | 440 | 304 | 152 | 0 | 285 | 0 | | 19 | 430 | 414 | 59 | 0 | 290 | 0 | | 20 | 420 | 408 | 335 | 0 | 343 | 0 | | 21 | 456 | 432 | 460 | 0 | 218 | 0 | | 22 | 440 | 420 | 432 | 0 | 216 | 0 | | 23 | 450 | 410 | 165 | 0 | 317 | 0 | | 24 | 460 | 415 | 270 | 0 | 158 | 0 | | 25 | 450 | 415 | 375 | 0 | 72 | 0 | | 26 | 120 | 420 | 400 | 0 | 0 | 0 | | 27 | 340 | 410 | 410 | 0 | 0 | 0 | | 28 | 448 | 390 | 400 | 0 | 0 | 0 | | 29 | 440 | 415 | 390 | 0 | 0 | 0 | | 30 | 430 | 405 | 0 | 0 | 0 | 0 | | 31 | - | 417 | - | 0 | 0 | - | $\label{eq:Appendix-2} \mbox{\footnote{the Month of Spent-Wash into the digester (mg/l)}} \mbox{\footnote{the Month of Month of Spent-Wash into the digester (mg/l)}} \mbox{\footnote{the Month of Mon$ | Date / | | | | | | | |--------|--------|---------------|--------|--------|--------|--------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 80000 | 120000 | 122000 | 0 | 0 | 0 | | 2 | 90000 | 119000 | 123000 | 90000 | 0 | 0 | | 3 | 125000 | 115000 | 117000 | 90000 | 0 | 0 | | 4 | 120000 | 120000 | 118000 | 0 | 80000 | 0 | | 5 | 120000 | 116000 | 124000 | 0 | 82000 | 0 | | 6 | 120000 | 115000 | 123000 | 122000 | 0 | 0 | | 7 | 125000 | 112000 | 123000 | 100000 | 0 | 0 | | 8 | 125000 | 114000 | 116000 | 94000 | 85000 | 0 | | 9 | 112000 | 120000 | 122000 | 100000 | 98000 | 0 | | 10 | 122000 | 113000 | 125000 | 94000 | 106000 | 0 | | 11 | 125000 | 121000 | 120000 | 0 | 94000 | 0 | | 12 | 125000 | 120000 | 126000 | 0 | 108000 | 0 | | 13 | 120000 | 121000 | 130000 | 0 | 104000 | 0 | | 14 | 120000 | 125000 | 126000 | 0 | 100000 | 0 | | 15 | 120000 | 120000 | 127000 | 0 | 90000 | 0 | | 16 | 115000 | 122000 | 117000 | 0 | 92000 | 0 | | 17 | 112000 | 117000 | 124000 | 0 | 95000 | 0 | | 18 | 115000 | 100000 | 105000 | 0 | 94000 | 0 | | 19 | 120000 | 110000 | 110000 | 0 | 95000 | 0 | | 20 | 120000 | 109000 | 105000 | 0 | 90000 | 0 | | 21 | 112000 | 114000 | 120000 | 0 | 88000 | 0 | | 22 | 118000 | 116000 | 123000 | 0 | 90000 | 0 | | 23 | 112000 | 115000 | 120000 | 0 | 95000 | 0 | | 24 | 115000 | 111000 | 105000 | 0 | 85000 | 0 | | 25 | 115000 | 114000 | 104000 | 0 | 80000 | 0 | | 26 | 105000 | 110000 | 117000 | 0 | 0 | 0 | | 27 | 120000 | 118000 | 120000 | 0 | 0 | 0 | | 28 | 118000 | 125000 | 119000 | 0 | 0 | 0 | | 29 | 112000 | 117000 | 116000 | 0 | 0 | 0 | | 30 | 116000 | 126000 | 0 | 0 | 0 | 0 | | 31 | - | 120000 | - | 0 | 0 | - | Appendix-3 Chemical Oxygen Demand of treated water from digester (mg/l) | Date / | | | | | | | |--------|--------|--------|--------|--------|--------|--------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 35000 | 35000 | 35000 | 0 | 0 | 0 | | 2 | 35000 | 35000 | 36000 | 35000 | 0 | 0 | | 3 | 35000 | 35000 | 35000 | 35000 | 0 | 0 | | 4 | 35000 | 35000 | 35000 | 0 | 35000 | 0 | | 5 | 36000 | 36000 | 37000 | 0 | 35000 | 0 | | 6 | 37000 | 35000 | 36000 | 35000 | 0 | 0 | | 7 | 36000 | 35000 | 35000 | 36000 | 0 | 0 | | 8 | 35000 | 35000 | 35000 | 35000 | 35000 | 0 | | 9 | 36000 | 36000 | 35000 | 35000 | 35000 | 0 | | 10 | 35000 | 35000 | 35000 | 36000 | 36000 | 0 | | 11 | 36000 | 36000 | 36000 | 0 | 35000 | 0 | | 12 | 36000 | 35000 | 35000 | 0 | 36000 | 0 | | 13 | 35000 | 36000 | 36000 | 0 | 36000 | 0 | | 14 | 35000 | 36000 | 36000 | 0 | 35000 | 0 | | 15 | 36000 | 36000 | 37000 | 0 | 35000 | 0 | | 16 | 35000 | 36000 | 35000 | 0 | 34000 | 0 | | 17 | 35000 | 35000 | 36000 | 0 | 35000 | 0 | | 18 | 35000 | 34000 | 35000 | 0 | 34000 | 0 | | 19 | 36000 | 35000 | 35000 | 0 | 35000 | 0 | | 20 | 35000 | 35000 | 35000 | 0 | 34000 | 0 | | 21 | 35000 | 35000 | 35000 | 0 | 34000 | 0 | | 22 | 36000 | 35000 | 36000 | 0 | 34000 | 0 | | 23 | 36000 | 34000 | 35000 | 0 | 35000 | 0 | | 24 | 36000 | 34000 | 36000 | 0 | 34000 | 0 | | 25 | 35000 | 34000 | 35000 | 0 | 34000 | 0 | | 26 | 35000 | 34000 | 35000 | 0 | 0 | 0 | | 27 | 36000 | 35000 | 36000 | 0 | 0 | 0 | | 28 | 37000 | 36000 | 35000 | 0 | 0 | 0 | | 29 | 35000 | 35000 | 35000 | 0 | 0 | 0 | | 30 | 36000 | 35000 | 0 | 0 | 0 | 0 | | 31 | - | 35000 | - | 0 | 0 | - | # Appendix-4 Biogas Flow into Boiler (m³) | Date / | | | | | | | |--------|--------|---------------|--------|---------------|--------|--------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 5643 | 18627 | 18466 | 0 | 0 | 0 | | 2 | 10294 | 18760 | 16334 | 6382 | 0 | 0 | | 3 | 18175 | 18455 | 18817 | 3134 | 0 | 0 | | 4 | 19703 | 18652 | 17230 | 0 | 2757 | 0 | | 5 | 17742 | 18292 | 19961 | 0 | 6834 | 0 | | 6 | 16575 | 18388 | 18800 | 14533 | 0 | 0 | | 7 | 19562 | 17686 | 19118 | 18220 | 0 | 0 | | 8 | 19580 | 18600 | 19601 | 19256 | 5675 | 0 | | 9 | 17577 | 19332 | 19836 | 19929 | 13243 | 0 | | 10 | 18868 | 18660 | 19595 | 19253 | 15449 | 0 | | 11 | 18865 | 18950 | 19850 | 0 | 17587 | 0 | | 12 | 18813 | 19406 | 19648 | 0 | 16670 | 0 | | 13 | 17304 | 18864 | 19908 | 0 | 17942 | 0 | | 14 | 19701 | 19605 | 19538 | 0 | 10487 | 0 | | 15 | 18224 | 19220 | 19502 | 0 | 6999 | 0 | | 16 | 17904 | 19070 | 18721 | 0 | 8426 | 0 | | 17 | 17849 | 17763 | 19022 | 0 | 9089 | 0 | | 18 | 18682 | 10242 | 5692 | 0 | 9068 | 0 | | 19 | 19345 | 16443 | 2346 | 0 | 9215 | 0 | | 20 | 19117 | 16007 | 12374 | 0 | 10196 | 0 | | 21 | 18656 | 18100 | 20722 | 0 | 6244 | 0 | | 22 | 19142 | 18135 | 20024 | 0 | 6411 | 0 | | 23 | 18152 | 17669 | 7721 | 0 | 10092 | 0 | | 24 | 19302 | 16946 | 9282 | 0 | 4263 | 0 | | 25 | 18896 | 17642 | 13435 | 0 | 1769 | 0 | | 26 | 4705 | 16850 | 17600 | 0 | 0 | 0 | | 27 | 15007 | 18145 | 19040 | 0 | 0 | 0 | | 28 | 19173 | 18423 | 17986 | 0 | 0 | 0 | | 29 | 18005 | 18100 | 16801 | 0 | 0 | 0 | | 30 | 18188 | 19653 | 0 | 0 | 0 | 0 | | 31 | | 18709 | | 0 | 0 | | # Appendix – 5 %CH4, Volumetric content of Methane in biogas | Date / | | | | | | | |--------|--------|---------------|--------|--------|--------|--------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 63.31 | 62.75 | 61.5 | 0 | 0 | 0 | | 2 | 62.05 | 61.3 | 62.05 | 63.25 | 0 | 0 | | 3 | 62.33 | 62.75 | 61.05 | 63.05 | 0 | 0 | | 4 | 62.56 | 62.31 | 61.25 | 0 | 62.25 | 0 | | 5 | 61.82 | 62.38 | 61.2 | 0 | 62.68 | 0 | | 6 | 62.65 | 62.55 | 61.35 | 63 | 0 | 0 | | 7 | 62.25 | 62.75 | 62.36 | 62.85 | 0 | 0 | | 8 | 62.35 | 62.08 | 62.25 | 62.65 | 62.9 | 0 | | 9 | 62.14 | 62.18 | 61.1 | 62.9 | 61.8 | 0 | | 10 | 62.3 | 62.38 | 60.96 | 62.6 | 61.65 | 0 | | 11 | 61.41 | 62.11 | 61.56 | 0 | 62.15 | 0 | | 12 | 62.83 | 62.55 | 61.8 | 0 | 62.6 | 0 | | 13 | 62.85 | 61.43 | 61.55 | 0 | 62.9 | 0 | | 14 | 62.15 | 62.16 | 61.38 | 0 | 63.2 | 0 | | 15 | 61.05 | 62.21 | 61.58 | 0 | 63.4 | 0 | | 16 | 62.85 | 61.36 | 62.52 | 0 | 62.2 | 0 | | 17 | 62.24 | 62.38 | 61.56 | 0 | 63.1 | 0 | | 18 | 62.51 | 62.55 | 61.86 | 0 | 62.8 | 0 | | 19 | 62.75 | 61.33 | 61.55 | 0 | 62.65 | 0 | | 20 | 62.3 | 62.38 | 61.65 | 0 | 62.55 | 0 | | 21 | 61.88 | 61.99 | 62.38 | 0 | 63.15 | 0 | | 22 | 62.15 | 62.38 | 62.53 | 0 | 63.4 | 0 | | 23 | 62.35 | 61.31 | 62.4 | 0 | 62.9 | 0 | | 24 | 62.98 | 62.43 | 62.65 | 0 | 62.85 | 0 | | 25 | 62.51 | 62.05 | 62.85 | 0 | 61.95 | 0 | | 26 | 61.5 | 61.38 | 61.75 | 0 | 0 | 0 | | 27 | 62.65 | 62.31 | 62.75 | 0 | 0 | 0 | | 28 | 62.25 | 62.86 | 63.04 | 0 | 0 | 0 | | 29 | 61.36 | 62.36 | 62.95 | 0 | 0 | 0 | | 30 | 61.26 | 61.14 | 0 | 0 | 0 | 0 | | 31 | - | 61.15 | - | 0 | 0 | - | # Appendix – 6 Pressure of Biogas (mm of water column) | Date / | | | | | | | |--------|--------|---------------|--------|--------|--------|--------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 200 | 750 | 750 | 0 | 0 | 0 | | 2 | 400 | 750 | 650 | 350 | 0 | 0 | | 3
 750 | 750 | 750 | 100 | 0 | 0 | | 4 | 800 | 750 | 700 | 0 | 100 | 0 | | 5 | 700 | 750 | 800 | 0 | 250 | 0 | | 6 | 650 | 750 | 750 | 600 | 0 | 0 | | 7 | 800 | 700 | 750 | 750 | 0 | 0 | | 8 | 800 | 750 | 800 | 800 | 200 | 0 | | 9 | 700 | 800 | 800 | 800 | 500 | 0 | | 10 | 750 | 750 | 800 | 800 | 600 | 0 | | 11 | 750 | 750 | 800 | 0 | 700 | 0 | | 12 | 750 | 800 | 800 | 0 | 650 | 0 | | 13 | 700 | 750 | 800 | 0 | 700 | 0 | | 14 | 800 | 800 | 800 | 0 | 400 | 0 | | 15 | 750 | 800 | 800 | 0 | 250 | 0 | | 16 | 700 | 800 | 750 | 0 | 350 | 0 | | 17 | 700 | 700 | 750 | 0 | 350 | 0 | | 18 | 750 | 650 | 750 | 0 | 350 | 0 | | 19 | 800 | 650 | 100 | 0 | 350 | 0 | | 20 | 750 | 650 | 600 | 0 | 400 | 0 | | 21 | 750 | 750 | 850 | 0 | 250 | 0 | | 22 | 750 | 750 | 800 | 0 | 250 | 0 | | 23 | 750 | 700 | 300 | 0 | 400 | 0 | | 24 | 800 | 700 | 350 | 0 | 150 | 0 | | 25 | 750 | 700 | 550 | 0 | 100 | 0 | | 26 | 150 | 700 | 700 | 0 | 0 | 0 | | 27 | 600 | 750 | 750 | 0 | 0 | 0 | | 28 | 750 | 750 | 700 | 0 | 0 | 0 | | 29 | 700 | 750 | 700 | 0 | 0 | 0 | | 30 | 700 | 800 | 0 | 0 | 0 | 0 | | 31 | - | 750 | - | 0 | 0 | - | Temperature of Biogas (Deg Celsius) | Date / | | | | | | | |--------|--------|--------|--------|--------|--------|--------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 43 | 43 | 41 | 0 | 0 | 0 | | 2 | 44 | 43 | 41 | 41 | 0 | 0 | | 3 | 44 | 41 | 42 | 41 | 0 | 0 | | 4 | 45 | 43 | 42 | 0 | 39 | 0 | | 5 | 45 | 43 | 41 | 0 | 40 | 0 | | 6 | 44 | 41 | 43 | 42 | 0 | 0 | | 7 | 45 | 42 | 42 | 43 | 0 | 0 | | 8 | 45 | 44 | 42 | 43 | 40 | 0 | | 9 | 44 | 44 | 43 | 43 | 41 | 0 | | 10 | 44 | 45 | 43 | 43 | 41 | 0 | | 11 | 45 | 45 | 43 | 0 | 42 | 0 | | 12 | 44 | 45 | 41 | 0 | 42 | 0 | | 13 | 43 | 44 | 41 | 0 | 42 | 0 | | 14 | 44 | 41 | 41 | 0 | 41 | 0 | | 15 | 44 | 43 | 41 | 0 | 41 | 0 | | 16 | 43 | 44 | 42 | 0 | 41 | 0 | | 17 | 43 | 45 | 42 | 0 | 41 | 0 | | 18 | 44 | 46 | 42 | 0 | 41 | 0 | | 19 | 45 | 46 | 42 | 0 | 41 | 0 | | 20 | 45 | 45 | 41 | 0 | 41 | 0 | | 21 | 44 | 45 | 42 | 0 | 40 | 0 | | 22 | 45 | 41 | 42 | 0 | 40 | 0 | | 23 | 44 | 43 | 41 | 0 | 41 | 0 | | 24 | 44 | 44 | 41 | 0 | 40 | 0 | | 25 | 45 | 46 | 41 | 0 | 40 | 0 | | 26 | 42 | 46 | 42 | 0 | 0 | 0 | | 27 | 43 | 45 | 42 | 0 | 0 | 0 | | 28 | 44 | 44 | 42 | 0 | 0 | 0 | | 29 | 44 | 45 | 42 | 0 | 0 | 0 | | 30 | 45 | 44 | 0 | 0 | 0 | 0 | | 31 | - | 40 | - | 0 | 0 | - | Density of Methane kg/cm³ (calculated from pressure and temperature) | Date / | | | | | | | |--------|--------|---------------|--------|--------|--------|--------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 0.63 | 0.66 | 0.67 | 0.72 | 0.72 | 0.72 | | 2 | 0.64 | 0.66 | 0.66 | 0.64 | 0.72 | 0.72 | | 3 | 0.66 | 0.67 | 0.67 | 0.63 | 0.72 | 0.72 | | 4 | 0.66 | 0.66 | 0.66 | 0.72 | 0.63 | 0.72 | | 5 | 0.66 | 0.66 | 0.67 | 0.72 | 0.64 | 0.72 | | 6 | 0.66 | 0.67 | 0.66 | 0.66 | 0.72 | 0.72 | | 7 | 0.66 | 0.66 | 0.67 | 0.66 | 0.72 | 0.72 | | 8 | 0.66 | 0.66 | 0.67 | 0.67 | 0.64 | 0.72 | | 9 | 0.66 | 0.67 | 0.67 | 0.67 | 0.65 | 0.72 | | 10 | 0.66 | 0.66 | 0.67 | 0.67 | 0.66 | 0.72 | | 11 | 0.66 | 0.66 | 0.67 | 0.72 | 0.66 | 0.72 | | 12 | 0.66 | 0.66 | 0.67 | 0.72 | 0.66 | 0.72 | | 13 | 0.66 | 0.66 | 0.67 | 0.72 | 0.66 | 0.72 | | 14 | 0.67 | 0.67 | 0.67 | 0.72 | 0.65 | 0.72 | | 15 | 0.66 | 0.67 | 0.67 | 0.72 | 0.64 | 0.72 | | 16 | 0.66 | 0.67 | 0.67 | 0.72 | 0.64 | 0.72 | | 17 | 0.66 | 0.66 | 0.67 | 0.72 | 0.64 | 0.72 | | 18 | 0.66 | 0.65 | 0.67 | 0.72 | 0.64 | 0.72 | | 19 | 0.66 | 0.65 | 0.63 | 0.72 | 0.64 | 0.72 | | 20 | 0.66 | 0.65 | 0.66 | 0.72 | 0.65 | 0.72 | | 21 | 0.66 | 0.66 | 0.67 | 0.72 | 0.64 | 0.72 | | 22 | 0.66 | 0.67 | 0.67 | 0.72 | 0.64 | 0.72 | | 23 | 0.66 | 0.66 | 0.64 | 0.72 | 0.65 | 0.72 | | 24 | 0.67 | 0.66 | 0.64 | 0.72 | 0.63 | 0.72 | | 25 | 0.66 | 0.66 | 0.66 | 0.72 | 0.63 | 0.72 | | 26 | 0.63 | 0.66 | 0.66 | 0.72 | 0.72 | 0.72 | | 27 | 0.66 | 0.66 | 0.67 | 0.72 | 0.72 | 0.72 | | 28 | 0.66 | 0.66 | 0.66 | 0.72 | 0.72 | 0.72 | | 29 | 0.66 | 0.66 | 0.66 | 0.72 | 0.72 | 0.72 | | 30 | 0.66 | 0.67 | 0.72 | 0.72 | 0.72 | 0.72 | | 31 | - | 0.67 | - | 0.72 | 0.72 | - | # Appendix-7 Gross Electricity Generation in Power Plant (KWh) | Date / | | | | | | | |--------|---------|---------|---------|---------|---------|--------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 15186.0 | 15791.0 | 9732.0 | 15186.0 | 0.0 | 0.0 | | 2 | 16560.0 | 14800.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 3 | 16582.0 | 14655.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4 | 17456.0 | 9908.0 | 8637.0 | 0.0 | 3226.0 | 0.0 | | 5 | 17251.0 | 15058.0 | 14674.0 | 0.0 | 10632.0 | 0.0 | | 6 | 16987.0 | 15151.0 | 13919.0 | 9290.0 | 0.0 | 0.0 | | 7 | 17041.0 | 14953.0 | 14519.0 | 12209.0 | 0.0 | 0.0 | | 8 | 16972.0 | 15244.0 | 14202.0 | 12957.0 | 10244.0 | 0.0 | | 9 | 16727.0 | 14619.0 | 14754.0 | 12249.0 | 9536.0 | 0.0 | | 10 | 17128.0 | 15029.0 | 14801.0 | 13074.0 | 7917.0 | 0.0 | | 11 | 16965.0 | 15250.0 | 14805.0 | 6134.0 | 14885.0 | 0.0 | | 12 | 16535.0 | 14964.0 | 15452.0 | 0.0 | 14160.0 | 0.0 | | 13 | 16782.0 | 14555.0 | 15438.0 | 0.0 | 14331.0 | 0.0 | | 14 | 16453.0 | 14879.0 | 14881.0 | 0.0 | 13632.0 | 0.0 | | 15 | 16609.0 | 15042.0 | 14582.0 | 0.0 | 15646.0 | 0.0 | | 16 | 16943.0 | 14868.0 | 14632.0 | 0.0 | 15690.0 | 0.0 | | 17 | 17167.0 | 15048.0 | 14454.0 | 0.0 | 9965.0 | 0.0 | | 18 | 16824.0 | 14794.0 | 3761.0 | 0.0 | 15488.0 | 0.0 | | 19 | 16821.0 | 15165.0 | 0.0 | 0.0 | 16089.0 | 0.0 | | 20 | 17343.0 | 15144.0 | 8832.0 | 0.0 | 16600.0 | 0.0 | | 21 | 17315.0 | 14523.0 | 11720.0 | 0.0 | 17167.0 | 0.0 | | 22 | 17320.0 | 14816.0 | 10565.0 | 0.0 | 16964.0 | 0.0 | | 23 | 16861.0 | 14721.0 | 616.0 | 0.0 | 5916.0 | 0.0 | | 24 | 17627.0 | 12923.0 | 0.0 | 0.0 | 3381.0 | 0.0 | | 25 | 17229.0 | 13742.0 | 3748.0 | 0.0 | 0.0 | 0.0 | | 26 | 1981.0 | 14569.0 | 11285.0 | 0.0 | 0.0 | 0.0 | | 27 | 13810.0 | 14661.0 | 12674.0 | 0.0 | 0.0 | 0.0 | | 28 | 14336.0 | 14063.0 | 7718.0 | 0.0 | 0.0 | 0.0 | | 29 | 16152.0 | 14960.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 30 | 17547.0 | 14590.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 31 - | - | 14407.0 | - | 0.0 | 0.0 | - | Appendix – 8 Auxiliary Electricity Consumption (KWh) | Date / | | | | | | | |--------|--------|---------------|--------|---------------|--------|--------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 3516.0 | 3563.0 | 3371.0 | 3516.0 | 576.0 | 0.0 | | 2 | 3533.0 | 3070.0 | 3017.0 | 2233.0 | 2627.0 | 0.0 | | 3 | 3491.0 | 3544.0 | 3246.0 | 1516.0 | 2395.0 | 0.0 | | 4 | 3599.0 | 3445.0 | 3072.0 | 754.0 | 3043.0 | 0.0 | | 5 | 3592.0 | 3496.0 | 3487.0 | 982.0 | 3004.0 | 0.0 | | 6 | 3555.0 | 3507.0 | 3410.0 | 3199.0 | 840.0 | 0.0 | | 7 | 3523.0 | 3491.0 | 3540.0 | 3285.0 | 417.0 | 0.0 | | 8 | 3479.0 | 3418.0 | 3430.0 | 3253.0 | 3151.0 | 0.0 | | 9 | 3568.0 | 3392.0 | 3391.0 | 3147.0 | 3530.0 | 0.0 | | 10 | 3553.0 | 3336.0 | 3390.0 | 3149.0 | 3359.0 | 0.0 | | 11 | 3508.0 | 3397.0 | 3437.0 | 1828.0 | 3466.0 | 0.0 | | 12 | 3329.0 | 3253.0 | 3405.0 | 0.0 | 3431.0 | 0.0 | | 13 | 3455.0 | 3334.0 | 3428.0 | 202.0 | 3425.0 | 0.0 | | 14 | 3441.0 | 3335.0 | 3477.0 | 171.0 | 3469.0 | 0.0 | | 15 | 3372.0 | 3190.0 | 3551.0 | 124.0 | 3435.0 | 0.0 | | 16 | 3447.0 | 3285.0 | 3511.0 | 176.0 | 3448.0 | 0.0 | | 17 | 3575.0 | 3490.0 | 3483.0 | 301.0 | 3293.0 | 0.0 | | 18 | 3483.0 | 3377.0 | 1348.0 | 136.0 | 3447.0 | 0.0 | | 19 | 3512.0 | 3468.0 | 1557.0 | 184.0 | 3300.0 | 0.0 | | 20 | 3604.0 | 3535.0 | 3886.0 | 223.0 | 3525.0 | 0.0 | | 21 | 3512.0 | 3388.0 | 3406.0 | 637.0 | 3273.0 | 0.0 | | 22 | 3557.0 | 3522.0 | 3346.0 | 476.0 | 3042.0 | 0.0 | | 23 | 3506.0 | 3488.0 | 2447.0 | 416.0 | 2612.0 | 0.0 | | 24 | 3539.0 | 3327.0 | 2973.0 | 445.0 | 2461.0 | 0.0 | | 25 | 3623.0 | 3324.0 | 3209.0 | 225.0 | 0.0 | 0.0 | | 26 | 2506.0 | 3306.0 | 3279.0 | 158.0 | 0.0 | 0.0 | | 27 | 3325.0 | 3461.0 | 3245.0 | 100.0 | 0.0 | 0.0 | | 28 | 3415.0 | 3373.0 | 3120.0 | 93.0 | 0.0 | 0.0 | | 29 | 3449.0 | 3476.0 | 676.0 | 62.0 | 1268.0 | 0.0 | | 30 | 3517.0 | 3476.0 | 0.0 | 216.0 | 149.0 | 0.0 | | 31 - | | 3318.0 | - | 197.0 | 63.0 | - | Appendix – 9 Net Electricity Generation (KWh) | Date / | | | | | | | |--------|---------|---------------|---------------|---------------|---------|---------------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 11670.0 | 12228.0 | 6361.0 | 11670.0 | -576.0 | 0.0 | | 2 | 13027.0 | 11730.0 | -3017.0 | -2233.0 | -2627.0 | 0.0 | | 3 | 13091.0 | 11111.0 | -3246.0 | -1516.0 | -2395.0 | 0.0 | | 4 | 13857.0 | 6463.0 | 5565.0 | -754.0 | 183.0 | 0.0 | | 5 | 13659.0 | 11562.0 | 11187.0 | -982.0 | 7628.0 | 0.0 | | 6 | 13432.0 | 11644.0 | 10509.0 | 6091.0 | -840.0 | 0.0 | | 7 | 13518.0 | 11462.0 | 10979.0 | 8924.0 | -417.0 | 0.0 | | 8 | 13493.0 | 11826.0 | 10772.0 | 9704.0 | 7093.0 | 0.0 | | 9 | 13159.0 | 11227.0 | 11363.0 | 9102.0 | 6006.0 | 0.0 | | 10 | 13575.0 | 11693.0 | 11411.0 | 9925.0 | 4558.0 | 0.0 | | 11 | 13457.0 | 11853.0 | 11368.0 | 4306.0 | 11419.0 | 0.0 | | 12 | 13206.0 | 11711.0 | 12047.0 | 0.0 | 10729.0 | 0.0 | | 13 | 13327.0 | 11221.0 | 12010.0 | -202.0 | 10906.0 | 0.0 | | 14 | 13012.0 | 11544.0 | 11404.0 | -171.0 | 10163.0 | 0.0 | | 15 | 13237.0 | 11852.0 | 11031.0 | -124.0 | 12211.0 | 0.0 | | 16 | 13496.0 | 11583.0 | 11121.0 | -176.0 | 12242.0 | 0.0 | | 17 | 13592.0 | 11558.0 | 10971.0 | -301.0 | 6672.0 | 0.0 | | 18 | 13341.0 | 11417.0 | 2413.0 | -136.0 | 12041.0 | 0.0 | | 19 | 13309.0 | 11697.0 | -1557.0 | -184.0 | 12789.0 | 0.0 | | 20 | 13739.0 | 11609.0 | 4946.0 | -223.0 | 13075.0 | 0.0 | | 21 | 13803.0 | 11135.0 | 8314.0 | -637.0 | 13894.0 | 0.0 | | 22 | 13763.0 | 11294.0 | 7219.0 | -476.0 | 13922.0 | 0.0 | | 23 | 13355.0 | 11233.0 | -1831.0 | -416.0 | 3304.0 | 0.0 | | 24 | 14088.0 | 9596.0 | -2973.0 | -445.0 | 920.0 | 0.0 | | 25 | 13606.0 | 10418.0 | 539.0 | -225.0 | 0.0 | 0.0 | | 26 | -525.0 | 11263.0 | 8006.0 | -158.0 | 0.0 | 0.0 | | 27 | 10485.0 | 11200.0 | 9429.0 | -100.0 | 0.0 | 0.0 | | 28 | 10921.0 | 10690.0 | 4598.0 | -93.0 | 0.0 | 0.0 | | 29 | 12703.0 | 11484.0 |
-676.0 | -62.0 | -1268.0 | 0.0 | | 30 | 14030.0 | 11114.0 | 0.0 | -216.0 | -149.0 | 0.0 | | 31 | - | 11089.0 | - | -197.0 | -63.0 | - | # Appendix-10 Quantity of Fossil fuel burnt (tonnes) | Month | Apr-2007 | May-2007 | Jun-2007 | Jul-2007 | Aug-2007 | Sep-2007 | |-------------|----------|----------|----------|----------|----------|----------| | Quantity(t) | 449 | 175 | 40 | 65 | 664 | 0 | # Appendix-11 Calorific value of fossil fuel i combusted | Month | Apr-2007 | May-2007 | Jun-2007 | Jul-2007 | Aug-2007 | Sep-2007 | |--------------------|----------|----------|----------|----------|----------|----------| | Value
(Kcal/kg) | 5300 | 5300 | 5300 | 5300 | 5300 | 5300 | Appendix-12 Power consumed in equipment in digester plant (KWh) | Date / | | | | | | | |--------|--------|--------|--------|--------|--------|--------| | month | Apr-07 | May-07 | Jun-07 | Jul-07 | Aug-07 | Sep-07 | | 1 | 327.0 | 753.0 | 809.0 | 182.0 | 65.0 | 0.0 | | 2 | 509.0 | 855.0 | 733.0 | 327.0 | 64.0 | 0.0 | | 3 | 727.0 | 832.0 | 767.0 | 282.0 | 150.0 | 0.0 | | 4 | 981.0 | 817.0 | 797.0 | 281.0 | 301.0 | 0.0 | | 5 | 846.0 | 861.0 | 849.0 | 270.0 | 414.0 | 0.0 | | 6 | 822.0 | 867.0 | 731.0 | 556.0 | 400.0 | 0.0 | | 7 | 921.0 | 870.0 | 809.0 | 818.0 | 370.0 | 0.0 | | 8 | 885.0 | 885.0 | 849.0 | 891.0 | 304.0 | 0.0 | | 9 | 928.0 | 857.0 | 794.0 | 884.0 | 514.0 | 0.0 | | 10 | 898.0 | 865.0 | 842.0 | 862.0 | 573.0 | 0.0 | | 11 | 883.0 | 893.0 | 867.0 | 603.0 | 460.0 | 0.0 | | 12 | 859.0 | 912.0 | 835.0 | 157.0 | 583.0 | 0.0 | | 13 | 813.0 | 901.0 | 864.0 | 217.0 | 687.0 | 0.0 | | 14 | 858.0 | 920.0 | 783.0 | 379.0 | 643.0 | 0.0 | | 15 | 850.0 | 925.0 | 836.0 | 219.0 | 543.0 | 0.0 | | 16 | 869.0 | 860.0 | 834.0 | 300.0 | 449.0 | 0.0 | | 17 | 846.0 | 864.0 | 842.0 | 137.0 | 376.0 | 0.0 | | 18 | 792.0 | 891.0 | 466.0 | 127.0 | 367.0 | 0.0 | | 19 | 823.0 | 877.0 | 375.0 | 250.0 | 330.0 | 0.0 | | 20 | 868.0 | 857.0 | 542.0 | 284.0 | 398.0 | 0.0 | | 21 | 865.0 | 851.0 | 854.0 | 200.0 | 347.0 | 0.0 | | 22 | 845.0 | 811.0 | 787.0 | 136.0 | 408.0 | 0.0 | | 23 | 847.0 | 828.0 | 481.0 | 131.0 | 341.0 | 0.0 | | 24 | 840.0 | 785.0 | 402.0 | 128.0 | 262.0 | 0.0 | | 25 | 882.0 | 796.0 | 529.0 | 135.0 | 280.0 | 0.0 | | 26 | 439.0 | 751.0 | 717.0 | 133.0 | 275.0 | 0.0 | | 27 | 801.0 | 785.0 | 762.0 | 132.0 | 270.0 | 0.0 | | 28 | 834.0 | 796.0 | 712.0 | 130.0 | 282.0 | 0.0 | | 29 | 852.0 | 815.0 | 674.0 | 48.0 | 285.0 | 0.0 | | 30 | 767.0 | 823.0 | 340.0 | 117.0 | 275.0 | 0.0 | | 31 - | | 788.0 | - | 45.0 | 261.0 | - | # Appendix - 13 Quantity of digester solid residues generated (in form of liquid) m³ | Month | Apr-2007 | May-2007 | Jun-2007 | Jul-2007 | Aug-2007 | Sep-2007 | |---------------------------|----------|----------|----------|----------|----------|----------| | Quantity(m ³) | 0 | 0 | 0 | 0 | 0 | 0 | # Appendix – 14 Quantity of digester solid residue treated by composting (in form of liquid) m³ | Month | Apr-2007 | May-2007 | Jun-2007 | Jul-2007 | Aug-2007 | Sep-2007 | |---------------------------|----------|----------|----------|----------|----------|----------| | Quantity(m ³) | 0 | 0 | 0 | 0 | 0 | 0 | No digester solids were removed during current monitoring period # Appendix – 15 Coefficient of emission for fossil fuel i combusted in boiler (tCO2/tonne) (IPCC default value taken) | Month | Apr-2007 | May-2007 | Jun-2007 | Jul-2007 | Aug-2007 | Sep-2007 | |-------|----------|----------|----------|----------|----------|----------| | Value | 1.78 | 1.78 | 1.78 | 1.78 | 1.78 | 1.78 | ## Appendix -16 #### **Estimation of baseline emissions** Baseline scenario is that the electricity generated by the project would otherwise have been generated by the operation of grid-connected power plants and by the addition of new generation sources, as reflected in the combined margin (CM) calculations (for SR Grid) described below. #### Step 2.1: Calculate the Operating Margin emission factor (EF_{OM,v}) ACM0002, version 05 dated 03 March 2006, suggested following methods to calculate the Operating Margin emission factor(s) (EF_{OM,v}): - (a) Simple OM, or - (b) Simple adjusted OM, or - (c) Dispatch Data Analysis OM, or - (d) Average OM. As per the approved methodology ACM0002 Dispatch data analysis should be the first methodological choice. However due to lack of data availability 'Dispatch Data Analysis' is not selected for the project activity. The Simple adjusted OM and Average OM methods are applicable to project activities connected to the project electricity system (grid) where the low-cost/must run resources constitute more than 50% of the total grid generation. 'Simple OM' method is applicable to project activity connected to the project electricity system (grid) where the low-cost/must run resources constitute less than 50% of the total grid generation in 1) average of the five most recent years, or 2) based on long-term normal for hydroelectricity production. The low-cost/must run resources contribute to less than 50% of total power in the grid hence 'Simple OM' option has been chosen. #### Generation Mix of Power in Southern Grid | Туре | 2002-03 | 2003-04 | 2004-05 | |------------------------|----------|----------|----------| | Thermal | 93350.1 | 96664.0 | 97964.3 | | Diesel | 4457.0 | 3225.0 | 2370.1 | | Gas | 15138.0 | 16183.0 | 12276.6 | | Total (Thermal + Gas) | 112945.1 | 116072.0 | 112611.1 | | Wind* | 1577.3 | 2055.7 | 1270.7 | | Hydro | 18167.8 | 17317.0 | 25280.4 | | Nuclear | 4390.0 | 4700.0 | 4406.7 | | Low cost/Must run | 24135.1 | 24072.7 | 30957.8 | | Total | 137080.1 | 140144.7 | 143568.8 | | % of Low cost/must run | 18% | 17% | 22% | Unit Source www.cea.nic.in The Simple OM emission factor $(EF_{OM,simple,y})$ is calculated as the generation-weighted average emissions per electricity unit (tCO₂/MU) of all generating sources serving the project electricity system, not including low-operating cost and must-run power plants. Million Units The Simple OM emission factor can be calculated using either of the two following data vintages for years(s) y: - ➤ A 3-year average, based on the most recent statistics available at the time of PDD submission, or - The year in which project generation occurs, if EF_{OM,y} is updated based on ex post monitoring. The project activity uses the OM emission factor as per the 3-year average of Simple OM calculated based on the most recent statistics available at the time of PDD submission. | Source | MoU | OM (2002-03) | OM (2003-04) | OM (2004-05) | |--------------|-----------|--------------|--------------|--------------| | Year-wise OM | tCO2/ MWh | 0.952 | 0.978 | 0.992 | | ОМ | tCO2/ MWh | | 0.974 | | Emissions due to imports from other grids into the southern grid have been considered as "0 tCO2/MWh". This is conservative. #### Step 2.2: Calculate the Build Margin emission factor (EF_{BM,v}) As per the methodology the Build Margin emission factor ($EF_{BM,y}$) is calculated as the generation-weighted average emission factor (tCO_2/MU) of a sample of power plants. The project activity calculates the Build Margin emission factor $EF_{BM,y}$ ex ante based on the most recent information available on plants already built for sample group m at the time of PDD submission. The sample group *m* consists of either: - (a) The five power plants that have been built most recently, or - (b) The power plants' capacity additions in the electricity system, that comprise 20% of the system generation (in MU) and that have been built most recently. As per the baseline information data the option (b) comprises the larger annual generation. Therefore for the project activity the sample group m consists of power plants capacity additions in the electricity system that comprise 20% of the system generation (in MU) and that have been built most recently. Power plant capacity additions registered as CDM project activities are excluded from the sample group. Power Plants considered for Build Margin (BM) estimation: | Туре | State | Station | Capacity
(MW) | Commissioning
Date | |-------|-----------|--------------|------------------|-----------------------| | Hydro | AP | Mini Hydro | 30.0 | 01.12.2005 | | Hydro | Karnataka | Narayanpur | 6.6 | 01.12.2005 | | Hydro | Kerala | Other Hydro | 5.0 | 01.12.2005 | | Hydro | Kerala | Malampuzha | 2.5 | 01.12.2005 | | Hydro | Karnataka | Almattidam 6 | 55.0 | 10.08.2005 | | Hydro | Karnataka | Almattidam 5 | 55.0 | 06.07.2005 | | Hydro | Karnataka | Almattidam 4 | 55 | 26.03.2005 | | Hydro | Karnataka | Almattidam 3 | 55 | 13.01.2005 | | Hydro | Karnataka | Almattidam 2 | 55 | 04.11.2004 | | Hydro | Kerala | Malankara | 10.5 | 30.05.2004 | | Gas | Tamilnadu | Kuttalam | 36 | 30.03.2004 | |---------|-------------|----------------------------|-------|------------| | Hydro | Karnataka | Almattidam 1 | 15 | 26.03.2004 | | Hydro | Kerala | Chembukadavu | 6.5 | 30.12.2003 | | Hydro | Kerala | Urumi | 6.2 | 30.12.2003 | | Gas | Tamilnadu | Kuttalam | 64 | 30.11.2003 | | Thermal | Tamilnadu | NLC TS I extension | 420 | 15.09.2003 | | Hydro | AP | Srisailam Left 6 | 150.0 | 04.09.2003 | | Hydro | Karnataka | Shahpur | 1.4 | 01.08.2003 | | Hydro | AP | Srisailam Left 5 | 150.0 | 28.03.2003 | | Gas | Tamilnadu | Valuthur | 94 | 13.03.2003 | | Thermal | Tamilnadu | Neyvelli Zero | 250 | 16.12.2002 | | Thermal | Karnataka | Raichur TPS | 210 | 10.12.2002 | | Hydro | AP | Srisailam Left 4 | 150.0 | 29.11.2002 | | Thermal | AP | Simhadri | 500 | 15.08.2002 | | Hydro | AP | Srisailam Left 3 | 150.0 | 19.04.2002 | | Gas | AP | LANCO- Kondapalli | 355 | 01.03.2002 | | Diesel | AP | LVS power | 36.8 | 15.01.2002 | | Thermal | AP | Simhadri | 500 | 15.01.2002 | | Gas | AP | | | | | | | BSES- Peddapuram | 220 | 30.11.2001 | | Hydro | AP | Srisailam Left 2 | 150.0 | 12.11.2001 | | Diesel | Tamilnadu | Samayanallur DEPP | 106 | 22.09.2001 | | Diesel | Tamilnadu | Samalpatti DEPP | 105.7 | 15.07.2001 | | Diesel | Karnataka | Belgaum | 81.3 | 01.07.2001 | | Hydro | Karnataka | Madhavmantrii
 3 | 01.07.2001 | | Hydro | Kerala | Kuthungal | 21 | 01.07.2001 | | Gas | Karnataka | Tanir Bavi | 220 | 15.05.2001 | | Hydro | Karnataka | Gerusuppa | 240 | 01.05.2001 | | Hydro | AP | Srisailam Left 1 | 150.0 | 26.04.2001 | | Gas | Tamilnadu | Pillai Perumal Nallur GTPP | 330.5 | 26.04.2001 | | Diesel | Kerala | Kasargode | 21.84 | 15.03.2001 | | Hydro | Kerala | Kuttiadi | 50 | 27.01.2001 | | Nuclear | Karnataka | Kaiga 1 | 220 | 16.11.2000 | | Gas | Tamilnadu | Kovilkalapai | 108 | 30.09.2000 | | Hydro | Tamilnadu | Mukurthy Mini | 0.7 | 18.08.2000 | | Diesel | Karnataka | Bellay | 25.2 | 15.05.2000 | | Hydro | Tamilnadu | Parsons Valley | 30 | 29.03.2000 | | Hydro | Tamilnadu | Thirumurthy Mini | 1.95 | 20.03.2000 | | Nuclear | Karnataka | Kaiga 2 | 220 | 16.03.2000 | | Hydro | AP | Singur | 15.0 | 31.03.2000 | | Thermal | Karnataka | Torangulu Steam | 130 | 15.12.1999 | | Thermal | Karnataka | Torangulu Steam | 130 | 15.12.1999 | | Hydro | Kerala | Kakkad | 50 | 14.10.1999 | | Gas | Kerala | Kayamkulam GT3 | 129.2 | 01.10.1999 | | Hydro | Karnataka | Kodasalli 3 | 40 | 28.08.1999 | | Hydro | Karnataka | Rajankollur | 2 | 01.08.1999 | | Hydro | Karnataka | Harangi | 9 | 19.07.1999 | | Gas | Pondichery | PPCL GTG | 32.5 | 25.05.1999 | | Hydro | Karnataka | Kadra 3 | 50 | 21.05.1999 | | Hydro | Karnataka | Kodasalli 2 | 40 | 20.04.1999 | | Hydro | Tamilnadu | Sathanur | 7.5 | 30.03.1999 | | Diesel | Tamilnadu | GMR Vasavi DEPP | 196 | 01.02.1999 | | 210001 | Tarriiriadu | CIVITY VUOLVI DEI I | 130 | 01.02.1000 | | Source | MoU | Thermal | Diesel | Gas | Hydro | Nuclear | Wind | | |------------------------|------------------|------------|-----------|-----------|--------|---------|--------|------------| | Gross Generation | MU | 23929.8 | 1796.0 | 7339.4 | 3296.5 | 2926.3 | 1270.7 | | | Net Generation | MU | 23096.9 | 1742.3 | 7252.9 | 3279.7 | 2575.1 | 1270.7 | 39217.6 | | Heat Rate | kcal/kWh | 2490.0 | 2062.0 | 2000.0 | 0.0 | 0.0 | | | | Fuel CV | kcal/kg | 3820.0 | 10186.0 | 10350.0 | 0.0 | 0.0 | | | | Fuel Consumption | Tonnes per annum | 15598220.4 | 363572.7 | 1418241.5 | | | | | | Total Emissions | tCO2/ annum | 23495832.6 | 1137499.9 | 3430674.0 | | | | 28064006.6 | | Emission Factor-
BM | tCO2/ MWh | 0.716 | | | | | | | ## Step 2.3: Calculate the Electricity Baseline Emission Factor (EF_{electricity, y)} Electricity baseline emission factor is calculated as the weighted average of the Operating Margin emission factor (EFOM,y) and the Build Margin emission factor (EFBM,y) where the weights wOM and wBM, by default, are 50% (i.e., wOM = wBM = 0.5). This is presented in the table below. | Source | ource MoU | | OM (2003-04) | OM (2004-05) | | |-----------------------|-----------|-------------|--------------|--------------|--| | Year-wise OM | tCO2/ MWh | 0.952 0.978 | | 0.992 | | | ОМ | tCO2/ MWh | 0.974 | | | | | ВМ | tCO2/ MWh | 0.716 | | | | | Emission
Factor-CM | tCO2/ MWh | | 0.845 | | | # Appendix – 17 Quantity of biomass residues combusted in boiler for power and steam generation | Month | Apr-2007 | May-2007 | Jun-2007 | Jul-2007 | Aug-2007 | Sep-2007 | |----------------------|----------|----------|----------|----------|----------|----------| | Quantity
(Tonnes) | 485 | 745 | 684 | 100 | 328 | 0 |