page 1

UNFCCC

Deleted: analysis

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a baseline and monitoring methodology
- C. Duration of the project activity / crediting period
- D. Environmental impacts
- E. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: Baseline information
- Annex 4: Monitoring plan
- Annex 5: Stakeholder consultation
- Annex 6: Confirmation of no cap on electricity use
- Annex 7: Uncertainty analysis

Annex 8: Financial assumptions

Annex 9: List of PDD attachments

page 2

UNFOO

SECTION A. General description of project activity

A.1 Title of the <u>project activity</u>:

Transalloys Manganese Alloy Smelter Energy Efficiency Project PDD Version Number 6, 02 March 2007

A.2. Description of the <u>project activity</u>:

The Transalloys Manganese Alloy Smelter Energy Efficiency Project (hereafter, the "Project"), developed by Transalloys division of Highveld Steel and Vanadium Corportation Ltd (hereafter referred to as the "Project Developer"), is an industrial energy efficiency project that will reduce the electricity consumption in the production of silicomanganese (SiMn) alloy (a key component in steel making) at its Witbank facility in South Africa (hereafter referred to as the "Host Country").

The production of each tonne of manganese alloy produced in the current submerged electric arc furnaces requires approximately 5MWh of grid-fed electricity. The project is to retrofit current furnaces with new design of electric arc furnaces, electrode assemblies, and control and peripheral systems. This will reduce the specific electricity consumption of alloy production by some 10-20% to between 4.5-4MWh per tonne of alloy produced. The aim is to achieve approximately a 0.5MWh reduction in specific electricity consumption, with a belief that up to 1MWh could be achieved under the correct operating conditions, should the retrofitting be successful. The project will therefore displace electricity from the South African grid, which is mostly produced from coal. The amounts of coal and coke used as reductants, and paste (mostly made of carbon) used as electrode in the submerged electric arc furnaces are not expected to be affected by the project.

Five furnaces are covered by the project. The first one (#7) was retrofitted in late 2004, two more (#5 and #3) in 2005 and the last two (#1 and #6) are expected to be retrofitted, although plans have been delayed due to poor market conditions that directly affected the viability of the projects. The project is a prompt start project claiming carbon credits since October 2004 for retrofitting of the five furnaces. These credits, generated from electricity savings, were and are a determining factor in the decision to retrofit all furnaces and were considered in the setup of the project since 2003.

The project is helping the Host Country fulfil its goals of promoting sustainable development. Specifically:

- Makes a significant contribution to maintaining the livelihoods of the workers employed in this and ancillary industries both up and down stream of the facility;
- Reduces directly the amount of electricity needed to produce the silico-manganese alloy and hence reduces the demand placed upon the South African national grid on the demand side;
- Acts as a clean technology demonstration project, encouraging development of modern and more
 efficient utilisation of electricity throughout the Country;

Deleted: 5

- Has a more effective capture of fugitive dust from process, allowing better particulate capture and a reduced emission to the local environment.
- Allows Transalloys to maintain and increase its competitive advantage in what is a competitive, global, export focussed market. Transalloys currently contributes \$130m(+) to the national balance of payments through export sales. Recently, export focussed sectors have seen an increased risk of facilities going out of business as a result of the strong Rand, this project will contribute to mitigating some of this currency risk.

A.3. Project participants:

Table 1 - Project participants

Name of party involved (*) ((host) indicates a host party)	Private and/or public entity(ies) Project participants (*) (as applicable)	Kindly indicate if the party involved wishes to be considered as project participant (Yes/No)
South Africa(host)	Highveld Steel and Vanadium Corporation Limited	No
United Kingdom of Great Britain and Northern Ireland	EcoSecurities Group Plc	No

(*) In accordance with the CDM modalities and procedures, at the time of making the CDM-PDD public at the stage of validation, a Party involved may or may not have provided its approval. At the time requesting registration, the approval by the Party(ies) involved is required.

A.4. Technical description of the project activity:

A.4.1. Location of the project activity:

A.4.1.1. Host Party(ies):

South Africa (the "Host Country")

A.4.1.2. Region/State/Province etc.:

Gauteng Province

A.4.1.3. City/Town/Community etc:

Witbank

UNFCC

A.4.1.4. Detail of physical location, including information allowing the unique identification of this <u>project activity</u> (maximum one page):

Clewer Road, Witbank, 1035, Mpumalanga, RSA

A.4.2. Category(ies) of project activity:

According to Annex A of the Kyoto Protocol, this project fits in Sectoral Category 9, Metal production

A.4.3. Technology to be employed by the project activity:

The Transalloys facility currently uses 5 submerged electric arc furnaces for silicomanganese alloy production (see figure 1). Furnaces 1, 3 and 5 are Elkem design, while #6 is a self-built furnace based on that design. Furnace 7 is a Demag design. The electric capacities of the furnaces are 48MVA (#7 and #5), 22MVA (#6) and 21MVA (#1 and #3).

The approach of the project, for all furnaces, is to retrofit new technology into the existing furnace infrastructure, which is designed for a different technology. Under normal circumstances such technology would not be installed into old furnaces, but repairs would be done regularly to maintain the furnace at acceptable level.

More specifically, the central elements that are changed in the project are the following:

- Furnaces 7 and 5: the PCD (pitch centre diameter), which measures the distance between the three electrodes (see figure 3), is optimized in order to reduce electricity consumption. If the PCD is too big, then the furnace requires a higher current density; if the PCD is too small, the outside of the furnaces cools excessively, resulting in operational difficulties. The decision to change this PCD was based on assumptions and mathematical models that still need actual confirmation in practice, as such innovative changes have an important element of uncertainty. Changing this PCD means in particular that all 3 electrode column assemblies as well as the material inlets have to be changed and the existing roofing structure adapted to this new dimensions. For furnace 5, the investment cost is higher as offtake systems (stacks) also have to be changed and new lining and foundations have to be given to the furnace. Pyromet provides the technology for these furnaces, and it is the first time such technology is used for a brownfield project.
- The same principles are applied for furnaces 1, 3, and 6. These units being smaller, the design is a bit different and the elements needed to be changed for the project are not all the same. For instance, #3 is converted from a rotating (around its vertical axle) to a stationary furnace and the old pneumatic slipping system (to let the electrode paste down the electrode) is changed both elements make the scope of this retrofitting unique and challenging. Bateman provide the technology for these furnaces.

Figure 3 (above): View of the electrodes and raw material inlet from the top

Figure 2 (left): Plan view of electrodes and material feed bin (from the top)

The project involves taking furnaces out of production for several weeks to install the new system. The original and actual retrofitting schedule of the five furnaces is given in table 2. Retrofitting of furnaces 6 and 1 have been postponed to 2008 and 2009 if market conditions allow for it.

Table 2: Furnace Retrofitting Timetable							
Furnace	Size	Commissioning date (age of the furnace)	Original retrofitting Schedule	Actual retrofitting schedule			
7	48MVA	1990	July – September 2004	12July – 06 September 2004			

UNFCCC

5	48MVA	1979	March – May 2005	30May – 04 December 2005
6	22MVA	1980	July – September 2005	Expected 2008
1	21MVA	1964	March – May 2006	Expected 2009
3	21MVA	1964	July – September 2006	28May - 18 October 2005

A.4.4 Estimated amount of emission reductions over the chosen crediting period:

Assuming savings of 0.4MWh per tonne of SiMn produced once the furnaces are retrofitted, the following emission reductions can be expected from the project:

Table 3: Estimated emi	ssions reductions from the project
Estimated emission red	uctions from the project
Years	Annual estimation of emission reductions in tonnes of CO2e
2004-05	19,241
2005-06	47,125
2006-07	47,125
2007-08	47,125
2008-09	57,058
2009-10	66,553
2010-11	66,553
2011-12	66,553
2112-13	66,553
2013-14	66,553
Total estimated reductions (tonnes of CO2e)	550,438
Total number of crediting years	10
Annual average over the crediting period of estimated reductions (tonnes of CO ₂ e)	55,044

A.4.5. Public funding of the project activity:

The project will not receive any public funding from Parties included in Annex I of the UNFCCC.

page 7

UNFCCO

SECTION B. Application of a baseline and monitoring methodology

B.1. Title and reference of the <u>approved baseline and monitoring methodology</u> applied to the <u>project activity</u>:

The project uses approved methodology AM0038 ("Methodology for improved electrical energy efficiency of an existing submerged electric arc furnace used for the production of SiMn"), version 01, dated 29.09.06.

To calculate the grid emission factor, the project uses approved methodology ACM0002 ("Consolidated baseline methodology for grid-connected electricity generation from renewable sources"), version 06, dated 19.05.06.

To select the baseline and demonstrate additionality, the project uses the step-wise approach defined in AM0038, which refers to the latest version of the "Tool for the demonstration and assessment of additionality". Version 03 of this Tool, adopted at EB29, is used.

B.2 Justification of the choice of the methodology and why it is applicable to the project activity:

The project meets all the applicability criteria as set out in the methodology AM0038:

- a) Submerged electrical arc furnaces are used for production of silicomanganese (SiMn) both in the project case and baseline.
 - > This is indeed the case in the baseline and there are no plans to change this in the future.
- b) The electricity consumed, both in the project case and the baseline, by the submerged electric arc furnace is sourced from the grid and not by onsite generation.
 - > All the electricity is bought from national utility Eskom.
- c) The geographic and system boundaries for the relevant electricity grid can be clearly identified and information on the characteristics of the grid is available
 - There is only one national grid for South Africa, and therefore the geographic and system boundaries can be clearly identified. Information on the characteristics of the grid (mostly electricity generation and fuel consumption of all the plants) has been gathered in order to determine the grid emission factor according to ACM0002.
- d) The quality of the raw material and SiMn produced is not affected by the project activity and remains unchanged;
 - This quality will indeed be unchanged and this will be monitored in the project and compared against the baseline. In particular, the production has to meet certain specifications and it is shown that these specifications are still met in the project.

UVE00

- e) The local regulations/programs do not cap the level of grid electricity that can be procured by the SiMn production facility where the project activity is implemented;
 - South African and local regulations/programs do not constrain the facility from using electricity from the grid. This has been confirmed by Eskom (see annex 6).
- f) Data for at least three years preceding the implementing the project activity is available to estimate the baseline emission.
 - Data for seven years is available (1997-2003) and will be used to estimate the baseline emissions.
- g) Emission reduction credits shall be claimed only until the end of the lifetime of the equipment;
 - ➤ There is no specified lifetime of the equipment by the manufacturer. For the user (the project developer), the equipment can be kept as long as its availability and/or efficiency is sufficient to make it economically viable to run the furnace. This is ensured by performing regular maintenance and refurbishment operations, which is the current situation and which is what would continue to happen during the whole crediting period in the absence of the project activity (see also section B.4). We can see from table 1 that the furnaces of the project are between 16 and 42 years old, and the schedule of retrofitting is independent of that age.
- h) The project activity does not result in increase in production capacity of the SiMn production facility, where the project is implemented, during the crediting period.
 - The production capacity of each furnace (determined by its electric capacity (MVA) indicated in table 2) remains constant. Actual production can fluctuate as a result of operational requirements, market conditions and demand. No significant increase is expected in the project, but if the production in a given year is higher than the historic average, no emission reductions will be claimed for the extra-production (see equation 3 in section B.6.1).

All the above conditions being met, the methodology is applicable to the project.

B.3. Description of the sources and gases included in the project boundary

Spatial boundaries

The project boundary comprises of the following two components:

- The electricity grid from which the electricity used in the project activity is purchased, as defined in ACM0002; in this case, it is all the plants connected to the South African grid, owned and operated by Eskom.
- The physical structure of the submerged electric arc furnace, as described in figure 4 below. The project includes furnaces #1, 3, 5, 6 and 7 at Transalloys facility. Each furnace will be included in the project boundary only once it is retrofitted, as the retrofitting is scheduled over several years (see table 2).

Figure 4: Spatial extent of the project boundary (excluding the grid generation capacity according to ACM0002)

Emissions sources

The emissions sources included in the project boundary are defined in table 3 below.

page 10

UNFCCC

	Source	Gas	Included?	Ju	stification / Explanation
		CO ₂	Included	•	Only CO2 emissions associated with the electricity
	Grid electricity				consumption of the Submerged arc electric furnace
	generation				will be counted, according to ACM0002.
	generation	CH_4	Excluded		
		N ₂ O	Excluded		
		CO_2	Included	•	Although some part of the carbon will end up in the
e	Emissions from				end product it is assumed that 100% will be emitted
lin	the				to the air via the exhaust gases. Carbon content is
Baseline	consumption of				measured on 7 year historic average reductant
B	reductants				consumption.
	reductants	CH_4	Excluded	•	No CH ₄ emissions.
		N_2O	Excluded	•	N ₂ O emissions are excluded for simplification. ^a
	Emissions from	CO_2	Included	•	Based on 7 year historic average electrode paste
	the consumption of electrode paste				consumption.
		CH_4	Excluded	•	No CH ₄ emissions.
		N_2O	Excluded	•	N ₂ O emissions are excluded for simplification. ^a
		CO_2	Included	•	Only CO2 emissions associated with the electricity
					consumption of the Submerged arc electric furnace
	Grid electricity				will be counted, according to ACM0002.
	generation	CH_4	Excluded		
		N_2O	Excluded		
ý		N ₂ O CO ₂	Excluded Included	•	Although some part of the carbon will end up in the
ivity	Emissions from	_		•	end product it is assumed that 100% will be emitted
Activity	Emissions from	_		•	end product it is assumed that 100% will be emitted to the air via the exhaust gases. Reductant
ct Activity	the	_		•	end product it is assumed that 100% will be emitted
oject Activity		_		•	end product it is assumed that 100% will be emitted to the air via the exhaust gases. Reductant
Project Activity	the consumption of	CO ₂	Included		end product it is assumed that 100% will be emitted to the air via the exhaust gases. Reductant consumption is monitored during project.
Project Activity	the consumption of	CO ₂ CH ₄	Included Excluded	•	end product it is assumed that 100% will be emitted to the air via the exhaust gases. Reductant consumption is monitored during project. No CH ₄ emissions. N ₂ O emissions are excluded for simplification. ^a Electrode paste consumption is monitored during the
Project Activity	the consumption of reductants	CO ₂ CH ₄ N ₂ O CO ₂	Included Excluded Excluded Included	•	end product it is assumed that 100% will be emitted to the air via the exhaust gases. Reductant consumption is monitored during project. No CH ₄ emissions. N ₂ O emissions are excluded for simplification. ^a Electrode paste consumption is monitored during the project.
Project Activity	the consumption of reductants Emissions from	CO ₂ CH ₄ N ₂ O	Included Excluded Excluded	•	end product it is assumed that 100% will be emitted to the air via the exhaust gases. Reductant consumption is monitored during project. No CH ₄ emissions. N ₂ O emissions are excluded for simplification. ^a Electrode paste consumption is monitored during the

Table 4: Emissions sources included in or excluded from the project boundary

Note ^a: N₂O emissions are excluded for simplification

B.4. Description of how the <u>baseline scenario</u> is identified and description of the identified baseline scenario:

The determination of the baseline scenario is done according to the step-wise approach defined in AM0038. The project involves the implementation of energy efficient, new design technology in five furnaces. As

required by the methodology, baseline and additionality shall be determined per individual furnace – the approach here is to highlight the main elements that come into play for all furnaces and for each of these elements see how/if they apply to each furnace separately.

Step 1. Identify technically feasible options to increase energy efficiency within the project boundary

For each furnace, the same following alternatives are considered:

- a) Continued use of installed furnace technology
 - Under this scenario, current submerged electric arc furnace will continue to be used, producing silicomanganese alloy at a specific energy consumption of about 5 MWh per tonne of alloy produced. Normal repair and refurbishing operations (i.e. replacing existing equipment as it is) will be carried out occasionally to maintain the availability of the furnace at an acceptable level, but electrical efficiency cannot be increased significantly because the design of the furnace is still the same.
- b) The project activity, installation of a new-build design, not implemented as a CDM project
 - Under this scenario, current furnace is retrofitted in-situ with technology designed for new furnace, reducing specific electricity consumption to about 4-4.5 MWh per tonne of alloy owing to this new design. Core elements of the furnace (e.g. electrode columns) are rebuilt with a new design.
- c) Complete replacement of the installation
 - Under this scenario, current furnace as well as ancillary equipment are entirely replaced by a new installation.
- d) All other plausible and credible alternatives to the project activity that provide energy efficiency improvement to the furnace which are technically feasible to implement with comparable quality, properties and application areas
 - Although several different technology providers where considered (in addition to Pyromet and Bateman) by the project proponents, no additional alternative project activities were identified.

Table 4 below outlines some key differences between the three technically feasible options a), b) and c) identified. Only the change of the design can deliver consistent electricity savings – any normal repair/refurbishment (or new build with same design) could not decrease electricity consumption, or only marginally by improving overall furnace use (e.g. by decreasing the number of switch on/off during which electricity consumption is not efficient).

Tuble 5. Typic	Table 5. Typical characteristics of the three aternative scenarios identified in step 1							
All elements per furnace	a) Continued use -	b) Project activity –	c) Complete new					
and prices in Rands	refurbish	retrofit/rebuild	installation					
Costs of short-term repairs	ca. R9mn/yr	ca. R5mn/yr	R3mn/yr (?)					
Investment cost	0 (0.5 – 3mn for	R17-45mn depending on	R200mn (?)					
investment cost	each repair)	the furnace (see table 6)	K200IIII (!)					
Time offline	1-11 weeks	8-27 weeks depending on	Depends on whether					

Table 5: Typical characteristics of the three alternative scenarios identified in step 1

		the furnace (see table 2)	new installation replaces
			an existing one
Typical increase in availability*	5%	10%	n/a
Electricity savings	0	0.5-1 MWh/tSiMn	Depends on design

*The increase in availability of a furnace depends on so many factors that it is difficult to estimate the increase in availability through any of the alternatives. A brand new furnace could start off with poor availability due to "teething problems" – so can a repair or rebuild.

Step 2. Identify baseline alternatives that do not comply with legal or regulatory requirements:

For each furnace, all the alternatives comply with the laws and regulatory requirements for SiMn production in the project location; there are no government policies to impose energy efficiency improvements to the metal sector. Therefore, no alternatives shall be eliminated at this stage.

Step 3. Eliminate baseline alternatives that face prohibitive barriers:

This step is carried out by identifying a common set of barriers that can apply to at least one of the three alternatives remaining after steps 1 and 2. The description of each barrier is combined with an assessment of how this barrier affects the various alternatives considered for each furnace.

1. Low electricity price

South Africa is very rich in coal resources and almost 90% of the country's electricity is generated in coalfired power plants, mostly owned by state-owned utility Eskom. As a result, South Africa is "one of the four cheapest electricity producers in the world"¹. This situation provides no incentive for electrical efficiency projects, and there is no important energy efficiency culture in South Africa, as highlighted for instance in South Africa energy efficiency strategy². Project developers going beyond this usual culture in order to reduce their electricity consumption (alternatives b and c) will reduce electricity costs, but this is highly dependent on the actual electrical performance of the furnace (see point 5. below), and requires up-front investment in new equipment (see point 2. below).

2. <u>High investment cost</u>

Implementing a complete replacement of a furnace and ancillary equipments would require extremely high levels of investment. Even if CDM was considered to alleviate some of this financial pressure, this option

¹ South Africa 2005/2006 Yearbook, Chapter 16: Minerals, energy and geology, p469 (available at http://www.gcis.gov.za/docs/publications/yearbook/minerals_energy.pdf). See also http://www.dme.gov.za/energy/electricity.stm

² "<u>http://www.dme.gov.za/energy/electricity.stm</u>.

² "The second reason for the high energy intensity is that South Africa is sometimes wasteful in the use of energy. Low energy costs have not encouraged industry, commerce, transport and households to adopt energy efficiency measures." (Department of Minerals and Energy (2005) Energy Efficiency Strategy of the Republic of South Africa, section 3.1 page 8

page 13

does not present an economically feasible alternative; therefore, alternative c is eliminated from the rest of the analysis.

The project activity (alternative b) also incurs significant investment costs, which need to be recouped through electricity savings, increased availability, and decreased cost of repairs. These revenues are highly dependent on the price of SiMn, the exchange rate of the Rand and the technical performance of the project.

This applies to each furnace, although figures are different depending on the size of each furnace and the magnitude of the retrofit. Furnace 7 is big (48MVA – approximately 40,000tSiMn produced per year) but needs only replacement of the core elements. Furnace 5 is big and also needs some peripheral elements to be changed (especially offtake system), making the retrofit much more expensive. Furnaces 1,6 and 7 are smaller but need significant changes and therefore incur a similar cost to furnace 7. Figures per individual furnace are given in the table below.

Table 6: Investment cost of the project activity, furnace by furnace

Furnace	Size	Investment cost (mn Rand)
7	48MVA	17
5	48MVA	45
6	22MVA	ca. 20
1	21MVA	ca. 20
3	21MVA	ca. 18

3. Increased competition - uncertainty of silicomanganese and raw material prices

In the project activity (alternative b), the new improved furnace has an increased fixed cost (as opposed to variable costs from electricity and raw materials use) per unit of silicomanganese produced. One objective of the project is to compensate this increased fixed cost by an increased availability of the furnace compared to the availability with the continued operation of the existing furnace (alternative a). The balance between the two effects ("net profit/loss") is highly dependent on:

- the actual technical performance of the project (increased availability);
- the global price of SiMn (in \$);
- the exchange rate of the \$ (in Rand/\$).

The uncertainty associated with the technical performance of the project will be discussed in point 5. and the exchange rate in point 4. The global price of SiMn itself is affected by highly increased competition from China, which puts pressure on both SiMn price (downwards because of increased production) and raw material prices (upwards because of increased consumption). Between 2003 and 2004, when the decision to go ahead with the first furnace was made, production of SiMn from Asia and Oceania increased by 22% (2.63 to 3.21mn tSiMn)³ while production at each furnace of Transalloys remained the same.

³ See International Manganese Institute (August 2006) – World Overview Q2 2005 (available from: <u>http://www.manganese.org/marketresearch.php</u>)

page 14

Therefore, expected increased revenues from increased availability in the project activity (alternative b) were and still are very uncertain and threatened by changes in market conditions. Alternative a (continued use of current furnaces) is less affected by such changes. These external changes apply equally to all furnaces (they all produce SiMn) but increased availability will depend on the actual performance of each furnace.

4. <u>Uncertainty of exchange rate</u>

The project developer's business is focused on exports of SiMn to a global market. The price of SiMn is fixed in dollars while most operating costs are mostly expressed in Rands on the South African market; therefore, the project is highly dependent on the exchange rate of the dollar. The Rand was becoming increasingly strong when the decision to embark on the programme and go ahead with the first 3 furnaces was made (2004), as a result of the attractiveness of the South African economy following a successful transition from apartheid to an internationally attractive market economy.

Although this effect has been decreased to a certain extent in 2005-2006, overall market conditions (taking into account points 3 and 4 above) have deteriorated since 2004 and the retrofitting of the last two furnaces has been put on hold (see section B.5, step 3), which demonstrates the importance of barriers 3 and 4 to the viability of the project activity.

5. Technology risks

The attractiveness of the project is crucially dependent on its ability to deliver the expected savings from electricity use, lower repair costs, and to a lower extent increased availability. This represents a very high risk in the project activity due to its innovative character (see point 6. below) and the fact that metal production is to a large extent an art of craftsman.

Two years of operation of the new furnaces have confirmed these risks as a number of components have failed: "jumper pipes", dust covers, pressure rings, bellows, locking pipes, downpipes, slipping devices, rubber hoses and feed chutes). These 'design problems' as well as other unrelated operational problems have largely deteriorated the financial viability of the projects (see illustration below).

6. Lack of prevailing practice

As highlighted above in section A.4.3 and below in section B.5 (Step 3), the technology used in the project is not common practice. This causes extra-technical complications and increases the uncertainty of the performance of the project as it is even more difficult to assess how the features of the new design will fit in the existing infrastructure; the only advantage compared to a complete new build is the limited investment cost.

In conclusion of step 3, it can be seen that the alternative b, i.e. the project activity (installation of new-build design) not implemented as a CDM project, is facing a number of barriers which make it highly unlikely as the baseline scenario. However, to discard completely this alternative, an investment analysis is carried out as per step 4 of AM0038.

Step 4. Compare economic attractiveness of the remaining alternatives:

UNFCCC

This section compares the net present value of the two remaining alternatives:

- a) <u>Continued use of installed furnace technology</u>
- b) The project activity, installation of a new-build design, not implemented as a CDM project

As alternative a) doesn't entail any investment cost, its NPV cannot be calculated; instead, the NPV of alternative b) compared to alternative a) is calculated.

Parameters used and assumptions

The analysis uses the following parameters, which are also summarised on tables 7a below:

- Investment requirements: this takes into account all costs including equipment purchase, construction and installation. However, it does not include the opportunity cost of taking the furnace off-line during the retrofitting period (this is conservative as it would increase the investment cost). Investment cost for each furnace is indicated on table 7a (source: Transalloys see also PDD table 6)
- Discount rate: The 2year average interest rate on loans provided by The Development Bank of Southern Africa was 12.2% in 2003-04⁴. Based on this, we use 12% as the discount rate, which is an extremely conservative assumption given that the project is funded by Highveld's own funds and therefore requires a higher return because of the risks involved (risks highlighted in step 3 above).
- <u>Price of energy, raw materials and products. According to the methodology, as a default assumption the current prices⁵ have been assumed as the future prices:</u>
 - i. Electricity: the cost of electricity depends on the season (winter/summer) as well as the tariff band (peak/standard/off-peak), and therefore varies every month. The average price weighed by the average proportion of the various tariff bands and seasons is calculated at 113R/MWh (see annex 8)⁶.
 - Raw material: the cost of ore is based on historic prices paid by Transalloys. It is integrated with other costs of production (including electricity) to calculate the total cost of production. Added to the cost of transport, it gives an overall "cost of sale" of 2,735 R/t (see details in annex 8)
 - iii. Products: each furnace has several products (e.g. lump, fines) with different values, and a weighed average of the sale of the various products is used to calculate the total "revenue from sale" of 2,835 R/t (see annex 8). This is relatively low because of the market conditions and exchange rate in 2004, and the sensitivity analysis will include a 10% increase of this parameter to see its effect on the financial indicators.
- Operation and maintenance costs: Costs of operation are integrated in the overall "cost of sale" (see ii) above). Costs of maintenance (or of "short-term repairs") in the baseline are based on Transalloys 2004 data. Costs of maintenance in the project are lower due to the fact that the newly retrofitted furnace needs less repair than the old one an expected

⁴ Average of the value in 2002/03 (13.5%) and in 2003/04 (11.0%). Source: Development Bank of Southern Africa Ltd, Annual report 2003/2004, page 8. Available from http://www.dbsa.org/Research/Pages/AnnualReports.aspx

⁵ i.e. as of 2004, when decision to go ahead with the project was made

⁶ Note: 1USD is approximately equivalent to 7 Rands.

UNFCCC

savings rate is used, which differs between the furnaces (see table 7a and explanation below).

- Production rate: the level of production of each furnace is affected by the project due to the use of a new furnace with new design. In theory, it can be higher in the project. However, this is very difficult to achieve due to the technical difficulties associated with operating the new design. The project has indeed failed to achieve this in the first two years of operation (see details of failing components in paragraph 5 of step 3 above), where the production level has only been between 93% (for furnace 7) and 97% (for furnace 5) of the production level in the baseline however, we conservatively assume that the production level is maintained in the project. In the sensitivity analysis, we also consider the case where this production level would go 10% above the baseline level.
- <u>Electricity savings: Savings of 0.1MWh/t are expected. This is lower than the target</u> potential of the project, but is actually higher than the savings that have been realised so far. Nevertheless, it is hoped that project performance (electrical efficiency) will increase, and savings of 0.3MWh/t (i.e. an additional 0.2MWh/t) are taken in the sensitivity analysis to see how this would affect project financial indicators.</u>

All furnaces have some similar parameters, such as the cost of electricity, raw material and products. There are however some important differences between the furnaces regarding investment costs, production rates, and savings on short-term repairs. Furnace 5 is one of the two big ones (together with furnace 7) and had high repair costs in the baseline; therefore, the project allows to make significant savings on this (almost 50%), but at a high investment cost (45,000,000R). In comparison, furnace 7 is also big but needed fewer modifications (and lower investment cost) due to its relatively good conditions before retrofitting; therefore, it has similar absolute savings and investment cost to the other 3 smaller furnaces (i.e. about 17-20mn R investment cost and 2.4mn R/yr savings on short-term repairs).

<u>Financial results</u>

Table 7a below summarises the assumptions for each furnace and indicates the resulting financial indicators. It shows that the net present value of the retrofitting is negative for all furnaces. This can be explained by analysing the three main components of the project and varying them with a sensitivity analysis.

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Versio

page 17

Table 7a: Financial analysis

			Furnace >	a. Fce #7	b. Fce #5	c. Fce #6	d. Fce #1	e. Fce #3	SOURCE
0.	Investment c	ost	R	17,238,000	45,000,000	20,000,000	20,000,000	18,000,000	A PDD table 6 (investment costs)
		Production in the baseline	tSiMn/yr	39,396	37,767	20,337	19,441	19,326 E	B PDD table 9 (Qp historic)
	Increased	Production in project vs baseline	%	100%	100%	100%	100%	100% (Production level expected to be equal in bsl and project (see PDD step 4)
1.	availability	=> Additional production in project	tSiMn	-	-	-	-	- [D D=B*(C-1)
	availability	Cost of sale*	R/tSiMn	2,735	2,735	2,735	2,735	2,735 E	1 PDD annex 8
		Revenues from sale**	R/tSiMn	2,835	2,835	2,835	2,835	2,835	2 PDD annex 8
		=> Additional profit per year***	R/yr	-	-	-	-	- F	
		Production in the project	tSiMn/yr	39,396	37,767	20,337	19,441	19,326	G=B*C
2.	Electricity	Electricity savings per tonne produced	MWh/t SiMn	0.10	0.10	0.10	0.10	0.10	H Optimistic expectation (see PDD step 4)
۷.	savings	=> Electricity savings	MWh/yr	3,940	3,777	2,034	1,944	1,933 I	I=G*H
		Cost of electricity	R/MWh	113	113	113	113	113	PDD annex 8
		=> Revenues from electricity savings	R/yr	446,253	427,801	230,365	220,215	218,913 k	K K=I*J
	Savings on	Cost in baseline	R/yr	9,600,000	13,690,114	6,000,000	6,000,000	6,000,000 L	 Transalloys historic data
3.	short term	Savings on repair costs in project	%	24%	48%	40%	40%	40%	A Realistic expectation (see PDD step 4)
	repair costs	=> Cost savings per year	R/yr	2,329,270	6,540,748	2,400,000	2,400,000	2,400,000	N N=L*M
1+2+3	3 Total revenue	es	R/yr	2,775,523	6,968,549	2,630,365	2,620,215	2,618,913	O O=F+K+N
=>	Financial	Net present value (NPV)	R	(2,186,891)	(7,026,632)	(5,343,535)	(5,391,819)	(3,612,302)	P P=NPV(12%,A,O)
=>	indicators	Internal rate of return (IRR)	%	8.1%	7.2%	3.5%	3.4%	5.8%	Q Q=IRR(A,O)

** Revenue from sale = Cost of delivered product

*** Additional profit per year is zero in the base case. However, it will be changed in the sensitivity analysis scnarios 1a and 1b

Note: Parameters highlighted in grey are those which are being changed in the sensitivity analysis

Table 7b: Sensitivity analysis – Example of results for scenario 1a (+10% production in project)

			Furnace >	a. Fce #7	b. Fce #5	c. Fce #6	d. Fce #1	e. Fce #3	SOURCE
0.	Investment of	ost	R	17,238,000	45,000,000	20,000,000	20,000,000	18,000,000 A	 PDD table 6 (investment costs)
		Production in the baseline	tSiMn/yr	39,396	37,767	20,337	19,441	19,326 E	8 PDD table 9 (Qp historic)
	Increased	Production in project vs baseline	%	110%	110%	110%	110%	110% 0	Production level 10% higher in project than baseline
1.	Increased availability	=> Additional production in project	tSiMn	3,940	3,777	2,034	1,944	1,933 E	D D=B*(C-1)
	avaliability	Cost of sale*	R/tSiMn	2,735	2,735	2,735	2,735	2,735 E	1 PDD annex 8
		Revenues from sale**	R/tSiMn	2,835	2,835	2,835	2,835	2,835 E	2 PDD annex 8
		=> Additional profit per year***	R/yr	396,033	379,657	204,440	195,433	194,277 F	F=D*(E2-E1)
		Production in the project	tSiMn/yr	43,336	41,544	22,371	21,385	21,259	G=B*C
2.	Electricity	Electricity savings per tonne produced	MWh/t SiMn	0.10	0.10	0.10	0.10	0.10 H	Optimistic expectation (see PDD step 4)
2.	savings	=> Electricity savings	MWh/yr	4,334	4,154	2,237	2,139	2,126 I	I=G*H
	-	Cost of electricity	R/MWh	113	113	113	113	113	PDD annex 8
		=> Revenues from electricity savings	R/yr	490,879	470,581	253,401	242,237	240,804 k	K K=I*J
	Savings on	Cost in baseline	R/yr	9,600,000	13,690,114	6,000,000	6,000,000	6,000,000 L	Transalloys historic data
3.	short term	Savings on repair costs in project	%	24%	48%	40%	40%	40% N	A Realistic expectation (see PDD step 4)
	repair costs	=> Cost savings per year	R/yr	2,329,270	6,540,748	2,400,000	2,400,000	2,400,000	N N=L*M
1+2+	3 Total revenu	es	R/yr	3,216,182	7,390,987	2,857,842	2,837,670	2,835,081	O O=F+K+N
	Financial	Net present value (NPV)	R	(90,517)	(5,016,942)	(4,261,345)	(4,357,308)	(2,583,910) F	P P=NPV(12%,A,O)
=>	indicators	Internal rate of return (IRR)	%	11.8%	8.6%	5.4%	5.2%	7.6%	Q Q=IRR(A,O)

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Versio

page 18

Table 7c: Sensitivity analysis - Summary of results

	Parameter changed	Change scneario	Financial indicator	Unit	a. Fce #7	b. Fce #5	c. Fce #6	d. Fce #1	e. Fce #3	
	x	Base case	NPV	R	(2,186,891)	(7,026,632)	(5,343,535)	(5,391,819)	(3,612,302)	No change
	^	Dase case	IRR	%	8.1%	7.2%	3.5%	3.4%	0.070	
0.	Invesment	0 10% investment cost	NPV	R	(647,784)	(3,008,775)	(4,699,588)	(4,747,873)	(3,146,927)	A => A * 0.9
0.	cost		IRR	%	10.8%	9.8%	3.7%	3.6%	0.070	
		1a. + 10% production in project	NPV	R	(90,517)	(5,016,942)	(4,261,345)	(4,357,308)	(2,583,910)	C => C * 1.1
1	Increased	ra. + 10% production in project	IRR	%	11.8%	8.6%	5.4%	5.2%	7.6%	C=>C 1.1
1.	availability	1b. + 10% production in project	NPV	R	5,223,075	76,936	(1,518,363)	(1,735,175)	22,712	C => C * 1.1
		& + 10% revenues from sale	IRR	%	20.4%	12.1%	9.7%	9.4%		& E2 => E2 * 1.
			NPV	R	(1,549,994)	(6,416,070)	(5,014,756)	(5,077,525)	(3,299,867)) H => H + 0.3
		2a. + 0.3 MWh/t savings	IRR	%	9.3%	7.6%	4.1%	4.0%	6.3%	
2.	Electricity		NPV	R	(1,974,592)	(6,823,112)	(5,233,942)	(5,287,054)	(3,508,157)	J => J * 1.1
Ζ.	savings	2b. + 10% electricity cost	IRR	%	8.5%	7.4%	3.7%	3.6%	6.0%	J=> J I.I
	-	2c. + 0.3 MWh/t	NPV	R	(1,274,005)	(6,151,494)	(4,872,285)	(4,941,331)	(3,164,479)	H => H + 0.3
		& + 10% electricity cost	IRR	%	9.8%	7.8%	4.3%	4.2%	6.6%	& J => J * 1.1
	Savings on short term	3. + 10% savings on repair costs	NPV	R	(1,078,772)	(3,914,959)	(4,201,767)	(4,250,051)	(2,470,534)	M => M * 0.9
5.	repair costs	of the rest carrings of repair obold	IRR	%	10.1%	9.4%	5.4%	5.4%	7.8%	

UNFCCC

Sensitivity analysis

All main parameters of the project, regarding its 3 components (increase in availability, electricity savings, savings on short term repairs), have been varied to see their impact on the project's financial indicators. An example of the results obtained is presented in table 7b, and all results are summarised in table 7c.

1. <u>Difference in availability</u>

In theory, the use of the newly retrofitted furnace can allow a higher production level, and therefore higher profits from sales. However, it also brings difficulties, and a lot of elements can fail (see detail in paragraph 5 of step 3). Therefore, in the base case, we assume that furnaces produce as much in the project as in the baseline (which has not even been the case so far). This is however sensitive to two main parameters:

- The actual production level of the new furnaces. If it increases and goes above the baseline level, then the project generates extra-profits from the additional production. In sensitivity analysis scenario 1a, we assume a 10% increase in the production level in the project; the resulting NPV is still negative for all furnaces.
- The profit per tonne produced. If it increases, then an increase in production has a more positive impact on the project performance.

If the project manages to combine an increase in production level and with favourable market conditions (increase in revenue from sale), then the project can have a positive NPV (see scenario 1b for furnace 7). However, this scenario is unlikely and very uncertain; for instance, what happened in the first two years of operation is that the profits have been high but production level has been between 3 and 7% below the baseline production level, resulting in big losses of profits caused by the project⁷.

2. <u>Electricity savings</u>

In the base case, we assume savings of 0.1MWh/t produced. This is below the target potential of each retrofitting, however it is a more realistic assumption – in the first years of operation, the project has not even been able to reach this level. If improvements are made to the electrical efficiency in order to harness better the potential of the new furnaces and save an additional 0.3MWh/t (thus reaching the 0.4MWh/t target), then the revenues from electricity savings would increase importantly and can bring the IRR up to 9%. Combined with a 10% increase in electricity prices (sensitivity scenario 2c), the project IRR could reach almost 10% (for furnace 7). This still gives a negative NPV; furthermore, this scenario would depend on high savings being maintained long-term and electricity prices actually rising significantly, which has not been the case between 2004 and 2006 (for instance, electricity price in the last four months of 2006 were between 106 and 117R/MWh, i.e. still approximately the same as in 2004 where they were 113R/MWh in average).

3. Savings on short-term repair costs

⁷ Losses were -6.41mnR from this decreased production component only for furnace 7 in its first 27months of operation, and -8.06mnR in the first 14months of operation of furnace 5.

page 20

UNFCCO

The newly retrofitted furnaces have lower repair costs than the old ones, and this component generates important savings. A further 10% savings in those repair costs would increase again the profitability of the project, especially for furnaces 7 and 5, although there would still be a negative NPV, therefore the project would remain economically unattractive.

Discussion of the results of the sensitivity analysis:

The technical performance of the project and in particular the availability (production rate) will certainly increase in future years due to better handling of the new design – metal production has an important craftsmanship aspect to it, with a lot of learning by doing when it comes to adjusting operating parameters to a new furnace design.

However, the sensitivity analysis above shows that, even with a combination of favourable scenarios, the NPV of the project activity remains relatively low and, perhaps more importantly, highly uncertain – due to the variation of both internal parameters (saving rates, production rate, etc) and external parameters (exchange rate, selling price). Consequently, any additional, secure and diversified revenue from carbon credits contributes importantly to the project viability and has been an important element in the decision to go ahead with the project in the first place. See step 3 of section B.5 for more details on the impact and importance of registration.

Conclusion of section B.4

This section demonstrates that for each furnace, the project activity (installation of new-build design) not implemented as a CDM project (alternative b), is not the most realistic alternative because it faces a number of barriers and its economic attractiveness is <u>low</u>. The project undertaken as a CDM project still faces some of these barriers but they are alleviated and diminished to an acceptable level (see step 3 of section B.5). Therefore, the only realistic baseline alternative is alternative a) continued use of current furnace technology.

B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM project activity (assessment and demonstration of additionality):

Step 0. Preliminary screening based on the starting date of the project activity:

This step is not mandated by AM0038 and has been deleted from version 03 of the Tool for the demonstration and assessment of additionality; however, it is still used here to demonstrate that CDM was considered before the starting date of the project activity.

Deleted: ¶

Illustration based on financial results¶

To illustrate points 3 to 6 above and put some figures on the qualitative arguments advanced, below are the financial results to date (as of December 2006) from the retrofitting of furnaces 7 and 5:

Table 7: Financial results of the first two retrofittings covered by the project activity, as of December 2006.¶

... [1] **Deleted:** Nevertheless, the payback of the project activity is relatively long and, maybe more importantly, very uncertain (as illustrated by the difference between expected and actual paybacks).

Deleted: very uncertain

Deleted: , and there is no need to perform Step 4: Compare economic attractiveness of the remaining alternatives (this step has in fact partly been performed in table 7, but it is very difficult to conclude on the attractiveness of the project based on such a purely financial analysis – see for instance the extremely high or low NPV and IRR values).

page 21

UNFOO

The project began construction prior to the registration of the first CDM project, commencing construction in July 2004 (and operation in September 2004), which falls between 1 January 2000 and the date of the registration of a first CDM project activity (18 November 2004).

The project developer started engaging with EcoSecurities and Standard Bank for the CDM component of the project in 2003. Highveld's financial director attended a workshop held at Standard Bank (Johannesburg) in July 2003¹⁰ and confirmed in August 2003 Highveld's interest to go ahead with the CDM project¹¹. Subsequent follow-up was made between the companies to determine how the proposed project could benefit from carbon credits and a first outline of CDM proposal was given by EcoSecurities and Standard Bank to Highveld in February 2004¹².

This was a key element in the decision to embark on the programme of retrofitting all furnaces, which matured at the end of 2003 and beginning of 2004. Decision to go ahead with the first retrofitting (furnace 7) was voted in January 2004. After a successful trial period at the end of 2004 for furnace 7, it was decided to pursue with furnace 3 and 5 (approved in January 2005).

In terms of formal CDM milestones, final CDM contract was signed in August 2004¹³ after several proposals were made. This accelerated the process of developing a new methodology, which was finally approved on 30 September 2006 after 3 submissions (NM0092 rated B, NM0092-rev rated C, NM0146 rated A and approved as AM0038). The prospect of CDM revenues has been and continues to be a central element in the decision to pursue the programme and retrofit each furnace. Retrofitting of furnaces 1 and 6 has been delayed due in particular to the market conditions.

Step 1. Investment and sensitivity analysis:

It has been demonstrated in section B.4 that the project activity undertaken without the CDM (alternative b) is economically less attractive than the most plausible baseline scenario (alternative a) continued use of existing furnace technology, <u>An investment analysis based on the NPV/IRR was performed and consistently supports this fact for a range of realistic assumptions. This is illustrated in table 7b: the NPV of the project is still negative (i.e. IRR below 12%) in almost all sensitivity scenarios.</u>

Step 2. Common practice analysis

To date there has been no identifiable example of a similar project in South Africa, or the wider region, of a project approach that retrofits new technology into an infrastructure designed for a completely different technology. The adjustment of PCD of a furnace would normally only take place when the product is

Deleted: because of the perceived, but also real risks and uncertainties associated with the project activity

Deleted: The argument was illustrated by an investment analysis and included a NPV/IRR calculation and a description of the sensitivity of various parameters to the financial attractiveness of the project activity.

¹⁰ See PDD attachment A – Documents 1 and 2

¹¹ See PDD attachment A – Document 3

¹² See PDD attachment A – Document 4

¹³ See PDD attachment A – Document 5

Executive Board

page 22

changed (for instance: chrome, manganese and silicon alloys can be made in the same furnace) as the optimal PCD differs. Project developers are not aware of anyone who has made PCD adjustments for optimisation purposes, as it was done in furnaces 7 and 5, or changed the slipping device type of an existing electrode to the type now used in furnace #3 or the nature of the furnace (from rotating to stationary). It is the first brownfield project of this sort for technology providers Bateman and Pyromet.

Therefore, the project is not common practice in the manganese alloy, or wider metals production industry. Standard practice is to continue running existing stock, refurbishing as appropriate (typically every 3-5 years). Refurbishing would maintain the levels of consumption at about 5MWh per tonne of manganese alloy produced – the only way to change that efficiency is through a change in design. In some cases, facilities may build completely new furnaces but this would be very costly.

Step 3. Impact of CDM registration

Although this step has been deleted in version 03 of the Tool for the demonstration and assessment of additionality, it is mandated by AM0038 and is therefore carried out according to version 02 of the Additionality Tool.

The financial benefit from the revenues obtained by selling the certified emissions reductions has been one of the key issues encouraging investment in the proposed project activity. The CDM has been considered from an early stage (see step 0) and it is an integral part of the decision to go ahead with each retrofitting.

Revenues from carbon credits make a significant contribution to the overall profitability of the retrofitting project in themselves. For instance, at 12\$/CER, CDM revenues are approximately equivalent to 100 R/MWh¹⁴, which is almost as high as the cost of electricity itself – i.e. CDM double the revenue stream from electricity savings.

Furthermore, they diversify the sources of revenues in an industry under pressure from competition in its core business. In this sense, it is a more secure source of revenues than other principal sources of revenues of the project (savings from reduced repair costs and electricity use, and increased availability), although it is still subject to a certain extent to the technical performance of the furnaces.

It is also important to highlight the fact that the retrofitting of the last two furnaces of the project (#1 and #6) has been put on hold temporarily because of the difficult market conditions, technical challenges and other barriers faced by the project (see section B.4, step 3). The perspective of CDM is an important element in the overall attractiveness of those retrofittings, and the registration of the project will certainly encourage project developers to pursue the project activity.

Deleted: As shown in table 7 (in the examples of furnaces 7 and 5), revenues Deleted: s

1	Deleted: it
1	Deleted: diversifies
	Deleted: competitivity

UNECO

²²¹tCO2/MWh * 12\$/tCO2 * 7R/\$ = 102R/MWh, compared to an electricity price in the base case (2004 prices) of 113R/MWh (in the last four months of 2006, the price paid by Transalloys was still approximately the same, between 106 and 117R/MWh).

page 23

UNFCCO

B.6 Emission reductions

B.6.1. Explanation of methodological choices:

1. Baseline emissions

Emissions associated with SiMn production in the baseline are determined as follows:

$$BE_{y} = BE_{y,offsite} + BE_{y,onsite}$$
(1)

where:

BE_y Baseline emissions (tCO₂ in year y)

 $BE_{y,offsite}$ Offsite baseline (grid) electricity emissions associated with the electricity consumption of the submerged arc furnace (tCO₂e in year y)

 $BE_{y,onsite} \qquad Onsite baseline emissions associated with the consumption of Reductant (Coal and Coke) and electrode paste during the production of SiMn (tCO₂e in year y)$

The vintage period used for the determination of baseline emissions is 1997-2003 (7 years preceding the start of the project activity).

1.1. Offsite baseline emissions

Offsite baseline emissions are calculated according to:

$$BE_{y,offsite} = QP_{y,max} x \operatorname{sec}_{b} x EF_{y,offsite}$$
(2)

where:

BE _{y,offsite}	Offsite baseline (grid) electricity emissions associated with the electricity consumption of
	the submerged arc furnace (tCO ₂ e in year y)
QP _{y, max}	Quantity of SiMn production in year y (tSiMn/y) maximised at historic average via
	equation 3. This value is used in both the baseline and the project emission calculations
sec _b	Historic (at least a three year vintage period) average grid electricity consumption per
	tonne of SiMn produced (MWh/tSiMn)
$\mathrm{EF}_{\mathrm{y,offsite}}$	Grid electricity emissions factor (tCO ₂ e/MWh), estimated using ACM0002.

1.1.1. Determination of QPy, max

The SiMn production is limited to the historic level as follows:

$$QP_{y, max} = min^{m} of (QP_{y, monitored}, QP_{historic})$$
 (3)

where:

UNFCC

The historic average production of SiMn is calculated according to:

$$QP_{historic} = \frac{\sum_{i=1}^{n} QP_i}{n}$$
(4)

where:

QP_i, Annual SiMn production for the ith year preceding the project activity (tSiMn)

1.1.2. Determination of sec_b

The average specific electricity consumption per tonne of SiMn produced in the baseline situation is calculated as follows:

$$\sec_{b} = \frac{\sum_{i=1}^{n} EC_{i}}{\sum_{i=1}^{n} QP_{i}}$$
(5)

where:

- sec_b Historic (at least a three year vintage period) average grid electricity consumption per tonne of SiMn produced (MWh/tSiMn)
- QP_i. Annual SiMn production for the ith year preceding the project activity (tSiMn produced in year i)
- EC_{i.} Annual grid electricity consumption by the submerged electric arc furnace for the ith year preceding the project activity (MWh consumed in year i)
- 1.1.3. Determination of EF_{y,offsite}

AM0038 states that $EF_{y,offsite}$ should be estimated using the latest version of ACM0002; version 06 is used. $EF_{y,offsite}$ is calculating by estimating the Operating Margin and Build Margin emission factors of the South African grid

• STEP 1: Calculate the Operating Margin emission factor (EF_{OM}):

UNFCC

Four options are available to determine EFOM:

- a) Simple OM
- b) Simple adjusted OM
- c) Dispatch Data Analysis OM
- d) Average OM.

Although ACM0002's preferred option is c), this is not an option here due to the lack of data and the prohibitive cost of processing it if it was available. As low-cost and must-run resources (hydro, bagasse and nuclear in the South African grid) has always represented less than 50% of the electricity generation on the grid, option a) can be used and is used to determine EF_{OM} . The following equation is used:

$$EF_{OM,y} = \frac{\sum_{i,j} F_{i,j,y} \cdot COEF_{i,j}}{\sum_{j} GEN_{j,y}} \quad (6)$$

where:

- $F_{i,j,y}$ Amount of fuel *i* (in mass or volume unit) consumed by relevant power sources *j* in year(s) *y*
- Refers to the power sources delivering electricity to the grid, not including low-cost and must-run power plants
- $\text{COEF}_{i,j}$ CO2 emission coefficient of fuel *i* (tCO₂/mass or volume unit of fuel) taking into account the carbon content of fuels used by relevant power sources *j* and the percent oxidation of the fuel in year(s) *y*
- $GEN_{i,y}$ Electricity (MWh) delivered to the grid by source j

 $EF_{OM,y}$ is determined ex ante for years 2002, 2003 and 2004 as this is the most recent period for which information is available (2004 figures are only just in the process of being published by the National Energy Regulator). The value taken for EF_{OM} is the full generation weighed average of $EF_{OM,y}$. The values and sources of all data used are given in Annex 3. For some power sources, a default efficiency or specific fuel consumption have been used due to the lack of publicly available information (all assumptions made are conservative and explained in Annex 3). Coal emission factor is based on specific IPCC value for South Africa.

• STEP 2: Calculate the Build Margin emission factor (EF_{BM})

 EF_{BM} is determined ex ante by using the same equation as above, except that the sample of plants used is not *i* (all power sources excluding low-cost and must-run) but *m* and only the latest available year is used (2004). Plants in sample group *m* are constituted by the 5 most recent plants, as they represented a higher electricity generation than the generation of the 20% (in terms of generation) more recent. The dates of commissioning of power plants are indicated in annex 3 when they are available.

page 26

UNECO

Note: Using 2004 data to estimate the build margin underestimates the actual Build Margin emission factor, as the trend is to put back into use old, inefficient coal-fired power plants that had been shut down decades ago (Eskom 2006)¹⁵. This is due to "a sharp increase in the demand for electricity"; any effort to reduce this demand, such as the one undertaken in the project, could therefore directly avoid the production of electricity from these marginal plants (both in terms of operating margin and build margin), whose electricity production is more carbon intensive than any other plant on the grid.

 STEP 3: Calculate the Combined Margin (i.e baseline emission factor EF_{y,offsite}) A weighed-average of EF_{OM} and EF_{BM} is used to calculate EF_{y,offsite} (which is determined ex ante and will be constant through the crediting period). Default weights of ½ for OM, ½ for BM are used:

$$EF_{y,offsite} = \frac{EF_{OM} + EF_{BM}}{2}$$
(7)

The results of the calculations of EF_{OM} , EF_{BM} and $E_{y,offiste}$ ("Combined margin" – CM) are given in section B.6.3.

1.2. Onsite baseline emissions

Onsite baseline emissions are calculated using the following equations:

$$BE_{y,onsite} = QP_{y,max} \times EF_{b,onsite}$$
 (8)

where:

 BE_{y,onsite}
 Onsite baseline emissions associated with the consumption of Reductant (Coal and Coke) and electrode paste during the production of SiMn (tCO2e in year y)

 QP_{y, max}
 Value of SiMn production used for estimating baseline and project emissions for the year y (tSiMn/y)

 EF_{b,onsite}
 Baseline emission factor associated with the (onsite) consumption of reductant (Coal and Coke) and electrode paste per tonne of SiMn produced (tCO₂e/tSiMn). The average onsite emissions are based on historic (at least a three year vintage period) average annual consumption as calculated in equation 7

¹⁵ See <u>http://www.eskom.co.za/live/content.php?Item_ID=162M</u>:

[&]quot;th http://www.eskom.co.za/live/content.php?Item_ID=162M:

[&]quot;the Eskom Board of Directors took a final decision in 2003 for the Return to Service (RTS) of the three power stations, Camden, Grootvlei and Komati, that were mothballed in the late 1980's and early 1990's. Unit 6 at Camden Power Station was then identified as the first unit to be commissioned. Another 2 units will be commissioned in 2006, 3 units in 2007 and the last of the 8 units in 2008. Unit 6 [...] went on commercial load on 16 July 2005.

UNFOO

The onsite emission factor is determined as follows:

$$EF_{b,onsite} = \frac{\sum_{i=1}^{n} Q_{boal,i} * EF_{bcoal,i} + \sum_{i=1}^{n} Q_{boke,i} * EF_{bcoke,i} + \sum_{i=1}^{n} Q_{bpaste,i} * EF_{bpaste}}{\sum_{i=1}^{n} QP_{i}}$$
(9)

where:

- Baseline emission factor associated with the (onsite) consumption of reductant (Coal and EF_{b,onsite} Coke) and electrode paste per tonne of SiMn produced (tCO2e/tSiMn).
- Historic (at least a three year vintage period) annual consumption of coal used as reductant Q_{bcoal, i} in the submerged electric arc furnace in tonnes of coal per year (tCoal consumed in year i). EF_{bcoal,i} Emissions factor applied for the coal consumed as reductant.
- Historic (at least a three year vintage period) annual consumption of coke used as Qbcoke, i reductant in the submerged electric arc furnace in tonnes of coke per year (tCoke consumed in year i).
- EF_{bcoke,i} Emissions factor applied for the coke consumed as reductant.
- Historic (at least a three year vintage period) annual consumption of electrode paste used Q_{bpaste, i} as electrode in the submerged electric arc furnace in tonnes of electrode paste per year (t paste consumed in year i).
- EF_{bpaste} Emissions factor applied for the electrode paste consumed as electrode
- Annual SiMn production for the ith year preceding the project activity (tSiMn) QP_i
- According to the preferred method of AM0038 and owing to the project's good monitoring practice of this factor, the emission factor of coke is based on ex ante monitoring of the carbon content of the coke used in the facility rather than IPCC values. Carbon content is recorded monthly and annual averages are taken for EF_{bcoke,i}; if some monthly values are missing, average from previous and next months are used. Emission factors for the coal and the electrode paste are taken from IPCC (2006) (see section B.6.2).
- See section B.6.3 for the calculation of overall uncertainty of onsite emissions and an explanation of how this has been taken into account in the calculations.

2. Project emissions

Emissions associated with SiMn production in the project are determined as follows:

$$PE_y = PE_{y,offsite} + PE_{y,onsite}$$
 (10)

where: PE_v

Project emissions (tCO₂ in year y) $PE_{y,offsite}$ Offsite project (grid) electricity emissions associated with the electricity consumption of the submerged arc furnace (tCO₂e in year y)

page 28

UNFCCO

 $\label{eq:period} \begin{array}{ll} PE_{y,onsite} & Onsite \mbox{ project emissions associated with the consumption of Reductant (Coal and Coke) and electrode paste during the production of SiMn (tCO_2e in year y) \end{array}$

2.1. Offsite project emissions

Offsite project emissions are calculated according to:

 $PE_{y,offsite} = QP_{y,max} x sec_{p,y} x EF_{y,offsite}$ (11)

where:

PE_{y,offsite} Offsite project (grid) electricity emissions associated with the electricity consumption of the submerged arc furnace (tCO₂e in year y)

QP_{y, max} Value of SiMn production used for estimating baseline and project emissions for the year y (tSiMn/y), estimated using equation 3 of the baseline emission section

 $sec_{p,y} \qquad \mbox{Grid specific electricity consumption per tonne of SiMn produced in the project situation (MWh/tSiMn) in year y$

 $EF_{y,offsite}$ Grid electricity emissions factor (tCO₂e/MWh), estimated according to ACM0002 (see 1.1.3 above)

The average specific electricity consumption per tonne of SiMn produced in the project situation is calculated as follows:

$$\sec_{p,y} = \frac{EC_y}{QP_{y monitored}}$$
 (12)

where:

sec_{p,y} Grid specific electricity consumption per tonne of SiMn produced in the project situation (MWh/tSiMn) in year y

 $EC_{y_{i}}$ Annual grid electricity consumption by the submerged electric arc furnace in year y (MWh)

QPy,monitored, Monitored production of SiMn in year y during the project activity (tSiMn/y)

2.2. Onsite project emissions

Onsite project emissions are calculated using the following equations:

$$PE_{y,onsite} = QP_{y,max} x EF_{p,y,onsite}$$
(13)

where:

PE_{y,onsite} Onsite project emissions associated with the consumption of Reductant (Coal and Coke) and electrode paste during the production of SiMn (tCO2e in year y)

- page 29
- QP_{y, max} Value of SiMn production used for estimating baseline and project emissions for the year y (tSiMn/y)
- $EF_{p,y,onsite} \quad \mbox{Project emission factor associated with the (onsite) average consumption of reductant} (Coal and Coke) and electrode paste per tonne of SiMn in year y (tCO_2e/tSiMn) as calculated in equation 12.$

The onsite emission factor is determined as follows:

$$EF_{p,y,onsite} = \frac{Q_{poal,y} * EF_{pcoal,y} + Q_{poke,y} * EF_{pcoke,y} + Q_{ppaste,y} * EF_{ppaste,y}}{QP_{y,monitored}}$$
(14)

where:

- EF_{p,y,onsite} Project emission factor associated with the (onsite) average consumption of reductant (Coal and Coke) and electrode paste per tonne of SiMn produced (tCO2e/tSiMn) in year y. Consumption of coal used as reductant in the submerged electric arc furnace in tonnes of Qpcoal, y coal per year (tCoal/y). EF_{pcoal,y} Emissions factor applied for the coal consumed as reductant. Consumption of coke used as reductant in the submerged electric arc furnace in tonnes of Qpcoke, y coke per year (tCoke/y). EF_{pcoke.y} Emissions factor applied for the coke consumed as reductant. Consumption of electrode paste used as electrode in the submerged electric arc furnace in Qppaste, y tonnes of electrode paste per year (tpaste/y). Emissions factor applied for the electrode paste consumed as electrode, using the relevant EF_{ppaste,y} emissions factor (tCO2) for the carbon paste as specified by the manufacturer for the vintage period. QP_{y,monitored,} Monitored production of SiMn in year y during the project activity (tSiMn/y)
- > According to the preferred method of AM0038, project-specific measurement of the emission factor for the coke will be based on ex post monitoring of the carbon content of the coke used in the facility rather than IPCC values. Carbon content will be recorded monthly and annual averages are taken for $\text{EF}_{bcoal,i}$ and $\text{EF}_{bcoke,i}$. If some monthly values are missing, average from previous and next months will be used. Emission factor for the coal will be taken from IPCC (2006) and emission factor for the paste will be based on the supplier's specifications with possible use of IPCC or other literature references for the determination of the carbon content of volatiles in the paste.
- See section B.6.3 for the calculation of overall uncertainty of onsite emissions and an explanation of how this has been taken into account in the calculations..

3. Leakage

There is no leakage associated with the project activity, whether under AM0038 or ACM0002.

4. Emission reductions

page 30

UNFCCC

The emission reductions (ER_y) of the project activity during a given year y is the difference between the baseline, project emissions and emissions due to leakage, as expressed in the formula below:

$$ER_y = BE_y - PE_y - L_y \quad (15)$$

where :

 $\begin{array}{lll} ER_y & & Emissions \ Reductions \ (t \ CO_2e) \ in \ year \ y \\ BE_y & & Emissions \ in \ the \ baseline \ scenario \ (t \ CO_2e) \ in \ year \ y \\ EP_y & & Emissions \ in \ the \ project \ scenario \ (t \ CO_2e) \ in \ year \ y \\ L_y & & Leakage \ (t \ CO_2e) \ in \ year \ y \end{array}$

B.6.2. Data and parameters that are available at validation:

Data / Parameter:	QPi					
Data unit:	Tonnes of SiMn/year					
Description:	Annual SiMn pr	oduction for	7 years pre	eceding the	project acti	vity
Source of data used:	Project proponer	nt				
Value applied:						
			QPi (tSiM	In/y)		
	Furnace	1	3	5	6	7
	1997	21,685	21,930	38,847	22,571	40,685
	1998	7,506	9,518	42,005	24,188	42,399
	1999	21,779	17,680	35,788	8,238	44,477
	2000	18,641	19,731	35,877	21,269	34,862
	2001	21,809	22,660	34,843	21,846	31,933
	2002	23,349	22,159	41,898	22,618	43,700
	2003	21,321	21,601	35,108	21,632	37,717
	Total 97-03	136,090	135,279	264,366	142,362	275,773
Justification of the choice of data or description of measurement methods and procedures actually applied :	QPy,monitored (see section B.7.2)			ed for		
Any comment:						
Data / Parameter	ECi					

Data / Parameter:	ECi
Data unit:	MWh/year
Description:	Annual grid electricity consumption by the submerged electric arc furnace
	for 7 years preceding the project activity
Source of data used:	Project proponent
Value applied:	

12

page 31

			ECi (MW	/h/v)		
	Furnace	1	3	5	6	7
	1997	115,511	115,381	224,774	130.113	231,635
	1998	41,735	51,814	248,046	136,458	256.158
	1999	111,837	93,474	205,295	44,755	260,410
	2000	97,656	100,458	214,388	120,804	208,377
	2001	107,293	111,287	168,826	107,474	173,106
	2002	109,409	104,833	200,136	119,525	216,880
	2003	99,142	99,678	172,039	110,109	192,187
	Total 97-03	682,583	676,925	1,433,504	769,238	1,538,753
Justification of the choice of	Measurement me	ethods are th	e same as f	he ones that	will be use	ed for ECv
data or description of	(see section B.7.		ie suine us t	ine ones that	will be use	a ioi Eey
measurement methods and	(see section D.7.	2)				
procedures actually applied :						
Any comment:						
Data / Parameter:	Qboal,i					
Data unit:	Tonnes of coal/y					
Description:	Annual consump					ed electric
	arc furnace for 7	years prece	ding the pr	oject activity	y	
Source of data used:	Project proponer	nt				
Value applied:						
	Qbcoal,i (tcoal/y)					
			Qbcoal,i (te	coal/y)		
	Furnace	1	Qbcoal,i (to 3	coal/y) 5	6	7
	Furnace 1997	1 14,538			6 17,345	7 31,098
		—	3	5	-	
	1997	14,538	3 15,064	5 28,939	17,345	31,098
	1997 1998	14,538 4,494	3 15,064 5,862 11,529 13,055	5 28,939 33,313 31,738 33,574	17,345 16,586 5,764 17,146	31,098 31,741 37,165 31,216
	1997 1998 1999 2000 2001	14,538 4,494 13,005 13,426 16,304	3 15,064 5,862 11,529 13,055 17,863	5 28,939 33,313 31,738 33,574 31,619	17,345 16,586 5,764 17,146 19,936	31,098 31,741 37,165 31,216 26,698
	1997 1998 1999 2000 2001 2002	14,538 4,494 13,005 13,426 16,304 16,704	3 15,064 5,862 11,529 13,055 17,863 16,871	5 28,939 33,313 31,738 33,574 31,619 35,932	17,345 16,586 5,764 17,146 19,936 20,993	31,098 31,741 37,165 31,216 26,698 37,788
	1997 1998 1999 2000 2001 2002 2003	14,538 4,494 13,005 13,426 16,304	3 15,064 5,862 11,529 13,055 17,863 16,871 19,475	5 28,939 33,313 31,738 33,574 31,619	17,345 16,586 5,764 17,146 19,936	31,098 31,741 37,165 31,216 26,698 37,788 33,883
	1997 1998 1999 2000 2001 2002	14,538 4,494 13,005 13,426 16,304 16,704	3 15,064 5,862 11,529 13,055 17,863 16,871	5 28,939 33,313 31,738 33,574 31,619 35,932	17,345 16,586 5,764 17,146 19,936 20,993	31,098 31,741 37,165 31,216 26,698 37,788
Justification of the choice of data or description of measurement methods and procedures actually applied :	1997 1998 1999 2000 2001 2002 2003	14,538 4,494 13,005 13,426 16,304 16,704 18,501 96,972 ethods are th	3 15,064 5,862 11,529 13,055 17,863 16,871 19,475 99,719 e same as 1	5 28,939 33,313 31,738 33,574 31,619 35,932 32,739 227,854	17,345 16,586 5,764 17,146 19,936 20,993 20,195 117,965	31,098 31,741 37,165 31,216 26,698 37,788 33,883 229,589
data or description of measurement methods and	1997 1998 1999 2000 2001 2002 2003 Total 97-03 Measurement met	14,538 4,494 13,005 13,426 16,304 16,704 18,501 96,972 ethods are th	3 15,064 5,862 11,529 13,055 17,863 16,871 19,475 99,719 e same as 1	5 28,939 33,313 31,738 33,574 31,619 35,932 32,739 227,854	17,345 16,586 5,764 17,146 19,936 20,993 20,195 117,965	31,098 31,741 37,165 31,216 26,698 37,788 33,883 229,589
data or description of measurement methods and procedures actually applied :	1997 1998 1999 2000 2001 2002 2003 Total 97-03 Measurement met	14,538 4,494 13,005 13,426 16,304 16,704 18,501 96,972 ethods are th	3 15,064 5,862 11,529 13,055 17,863 16,871 19,475 99,719 e same as 1	5 28,939 33,313 31,738 33,574 31,619 35,932 32,739 227,854	17,345 16,586 5,764 17,146 19,936 20,993 20,195 117,965	31,098 31,741 37,165 31,216 26,698 37,788 33,883 229,589
data or description of measurement methods and procedures actually applied : Any comment: Data / Parameter:	1997 1998 1999 2000 2001 2002 2003 Total 97-03 Measurement models of the set of the se	14,538 4,494 13,005 13,426 16,304 16,704 18,501 96,972 ethods are th ction B.7.2)	3 15,064 5,862 11,529 13,055 17,863 16,871 19,475 99,719 e same as 1	5 28,939 33,313 31,738 33,574 31,619 35,932 32,739 227,854	17,345 16,586 5,764 17,146 19,936 20,993 20,195 117,965	31,098 31,741 37,165 31,216 26,698 37,788 33,883 229,589
data or description of measurement methods and procedures actually applied : Any comment:	1997 1998 1999 2000 2001 2002 2003 Total 97-03 Measurement me Qpcoal,y (see se	14,538 4,494 13,005 13,426 16,304 16,704 18,501 96,972 ethods are th ction B.7.2)	3 15,064 5,862 11,529 13,055 17,863 16,871 19,475 99,719 e same as 1	5 28,939 33,313 31,738 33,574 31,619 35,932 32,739 227,854	17,345 16,586 5,764 17,146 19,936 20,993 20,195 117,965	31,098 31,741 37,165 31,216 26,698 37,788 33,883 229,589
data or description of measurement methods and procedures actually applied : Any comment: Data / Parameter:	1997199819992000200120022003Total 97-03Measurement me Qpcoal,y (see seeQbcoke,iTonnes of coke/ Annual consumption	14,538 4,494 13,005 13,426 16,304 16,704 18,501 96,972 ethods are the ction B.7.2)	3 15,064 5,862 11,529 13,055 17,863 16,871 19,475 99,719 the same as t	5 28,939 33,313 31,738 33,574 31,619 35,932 32,739 227,854 he ones that	17,345 16,586 5,764 17,146 19,936 20,993 20,195 117,965 will be use	31,098 31,741 37,165 31,216 26,698 37,788 33,883 229,589 ed for
data or description of measurement methods and procedures actually applied : Any comment: Data / Parameter: Data unit: Description:	1997199819992000200120022003Total 97-03Measurement me Qpcoal,y (see seeQbcoke,iTonnes of coke/ Annual consump arc furnace for 7	14,538 4,494 13,005 13,426 16,304 16,704 18,501 96,972 ethods are the ction B.7.2) year otion of coke years prece	3 15,064 5,862 11,529 13,055 17,863 16,871 19,475 99,719 the same as t	5 28,939 33,313 31,738 33,574 31,619 35,932 32,739 227,854 he ones that	17,345 16,586 5,764 17,146 19,936 20,993 20,195 117,965 will be use	31,098 31,741 37,165 31,216 26,698 37,788 33,883 229,589 ed for
data or description of measurement methods and procedures actually applied : Any comment: Data / Parameter: Data unit:	1997199819992000200120022003Total 97-03Measurement me Qpcoal,y (see seeQbcoke,iTonnes of coke/ Annual consumption	14,538 4,494 13,005 13,426 16,304 16,704 18,501 96,972 ethods are the ction B.7.2) year otion of coke years prece	3 15,064 5,862 11,529 13,055 17,863 16,871 19,475 99,719 the same as t	5 28,939 33,313 31,738 33,574 31,619 35,932 32,739 227,854 he ones that	17,345 16,586 5,764 17,146 19,936 20,993 20,195 117,965 will be use	31,098 31,741 37,165 31,216 26,698 37,788 33,883 229,589 ed for

12

page 32

	Qbcoke,i (tcoke/y)					
	Furnace	1	3	5	6	7
	1997	1,480	1,718	3,644	1,734	3,702
	1998	554	803	3,361	2,245	4,172
	1999	1,652	1,479	2,986	788	3,517
	2000	1,234	1,409	2,656	1,687	2,085
	2001	1,163	1,234	1,151	1,002	1,964
	2002	563	836	2,247	823	1,880
	2003	1,011	973	1,507	1,118	1,689
	Total 97-03	7,657	8,452	17,552	9,397	19,009
Justification of the choice of	Measurement me	ethods are th	ne same as t	he ones that	t will be use	ed for
data or description of	Qpcoke,y (see se	ection B.7.2)			
measurement methods and	, , , , , , , , , , , , , , , , , , ,					
procedures actually applied :						
Any comment:						
	μ					
Data / Parameter:	Obpaste.i					

Data / Parameter:	Qbpaste,i	Qbpaste,i				
Data unit:	Tonnes of paste/year					
Description:	Annual consumption of electrode paste used as electrode in the submerged				e submerged	
	electric arc furna	ce for 7 yea	ars precedin	g the projec	t activity	
Source of data used:	Project proponer	nt				
Value applied:						
			Qbpaste,i (tj	paste/y)		
	Furnace	1	3	5	6	7
	1997	1,127	1,136	2,123	1,175	2,023
	1998	350	487	2,344	1,275	2,045
	1999	1,086	946	1,763	417	2,123
	2000	1,032	104	2,045	1,143	2,009
	2001	1,141	1,147	2,031	958	1,543
	2002	1,029	1,025	1,968	975	1,739
	2003	1,097	956	1,690	1,028	1,721
	Total 97-03	6,862	5,801	13,964	6,971	13,203
Justification of the choice of	Measurement me	ethods are the	ne same as t	the ones that	t will be use	ed for
data or description of	Qppaste, y (see se	ection B.7.2	2)			
measurement methods and						
procedures actually applied :						
Any comment:						
Data / Daman Arm						

Data / Parameter:	EFbcoal,i
Data unit:	tCO2/tcoal
Description:	Emission factor applied for the coal consumed as reductant based on
	carbon content
Source of data used:	IPCC (2006) – Vol3, Ch4, section 4.3.3.2, table 4.6 page 4.37
Value applied:	

page 33

UNFCCC

	EFbcoal,i (tCO2/tcoal) 3.1 tCO2/tcoal Source: IPCC (2006) Vol3, Ch4, p4.37, Table 4.6			
Justification of the choice of data or description of measurement methods and procedures actually applied :	The IPCC table gives specific values for coal used as reductant in ferroalloy production. The value for Si-metal is taken in the IPCC table.			
Any comment:	Project specific values cannot be used because previous coal carbon contents monitoring didn't enable a calculation of EFbcoal (several coal types have been used and no weighed average can be done).			

Data / Parameter:	EFbcoke,i				
Data unit:	tCO2/tcoke				
Description:	Emission factor applied for th	ne coke con	sumed as re	ductant based on	
•	carbon content				
Source of data used:	Project proponent				
Value applied:					
	EFb	coke,i (tCO	O2/tcoke)	1	
		Year	EF		
	1	1997	3.09		
		1998	3.13]	
	1	1999	3.10		
		2000	3.12		
	2	2001	3.15		
	2	2002	3.17		
	2	2003	3.19		
	Avera	age 97-03	3.13		
				_	
Justification of the choice of	Measurement methods are the	e same as th	ne ones that	will be used for	
data or description of	EFpcoke,y (see section B.7.2))			
measurement methods and					
procedures actually applied :					
Any comment:	A measured project-specific value for 7 years preceding the project				
	activity has been preferred to	IPCC valu	es.		
Data / Parameter:	EFbpaste,i				
Data unit:	tCO2/t of carbon paste				
Description:	Emission factor applied for the electrode paste consumed as electrode				

Data / Parameter:	EFbpaste,i
Data unit:	tCO2/t of carbon paste
Description:	Emission factor applied for the electrode paste consumed as electrode
	based on carbon content
Source of data used:	Paste supplier
Value applied:	3.32

page 34

Justification of the choice of	The paste supplier sur	unliad tha f	Collowing informatio	n on the composition		
data or description of	The paste supplier supplied the following information on the composition of the paste:					
measurement methods and procedures actually applied :	PROPERTY	UNIT	STANDARD	TYPICAL		
procedures actually applied.	Ash Content	%	<6 - 7	6.4		
	Volatile Matter	%	13 - 15	13.6		
	Fixed Carbon Content	%	> 79	79.8		
	The emission factor is then calculated using equation 4.19, p4.33 of IPCC (2006): EQUATION 4.19 CARBON CONTENT OF FEROALLOY REDUCTING AGENTS Total C-content in reducing agent i = Fix C in i + Content of volatiles in i • Cv Where: Cv = Carbon content in volatiles. Unless other information is available, Cv = 0.65 is used for coal and 0.80 for coke.					
	calorific value	baste are si paste is and e and carbo paste is the 15% of cok rbon conte Fbpaste=3.	milar to that of the c thracite, which is a for on content (like coke binder, which itself ting-value. nt of the paste is 79.8	oke: form of coal with high) is composed of a 8 + 13.6 * 0.80 =		

Data / Parameter:	Quality of coalb				
Data unit:	Mass fraction of each component (%m/m)				
Description:	Quality of coal based on elementary analysis and other relevant properties				
Source of data used:	Project proponent				
Value applied:					
	Quality of coalb				
	Composition (%) Fixed C Volatiles S P				
	Average 2003 52.9 30.4 0.74 0.22				
Justification of the choice of	Measurement methods are the same as the ones that will be used for the				
data or description of	Quality of coalp (see section B.7.2). The value for 2003 is used to				
measurement methods and	facilitate the comparison with the quality of coal at the beginning of the				
procedures actually applied :	project activity.				
Any comment:	Project proponent's lab analyses are preferred to supplier's data and are				

UNFCCC

CDM – Executive Board

page 35

	used to determine the emission factor of the coal EFbcoal,i.					i.
Data / Parameter:	Quality of cokeb					
Data unit:	Mass fraction of each component (%m/m)					
Description:	Quality of coke based on elementary analysis and other relevant propertie					
Source of data used:	Project proponent					
Value applied:						
	Quality of cokeb					
	Composition (%) Fixe	ed C	Volatiles	S	Р
	Average 2003	85	.6	1.7	0.93	0.35
Justification of the choice of	Measurement methods are the same as the ones that will be used for the					
data or description of	Quality of coalp (s	ee sectior	B.7.2	2). The value	for 2003 is	used to
measurement methods and	facilitate the comparison with the quality of coal at the beginning of the					
procedures actually applied :	project activity.					
Any comment: Project proponent's lab analyses are preferred to supplier						
	used to determine	the emissi	on fac	tor of the co	ke EFbcoke	,i.
Data / Parameter:	Quality of electro	-				
Data unit:	Mass fraction of ea	•				
Description:	Quality of electrode paste based on elementary analyses and other relevant					
	properties					
Source of data used:	Supplier					
Value applied:						
		GREEN		ata da series Altre de l'assest		
	Property Ash Content	Unit %		andard 46-7	Typical 6.4	
					13.6	
	Volatile Matter	%		3 - 15		
	Fixed Carbon Content	%		> 79	79.8	
	Apparent Density	g/cm ³	;	> 1.56	1.6	
	Plasticity Range	%	1	5 - 55	24	

J/gºC

°C

mm

mm

Specific Heat

Softening Point

Size (Cylinders)

Extruder Block Size

> 0.8

55 - 59

68 - 73 Diameter: 400 x Length: 550 Diameter: 500 x Length: 550 Diameter: 500 x Length: 1000

Diameter: 600 x Length: 1000 Diameter: 700 x Length: 1000

 $100 \ge 100 \ge 80$

0.88

Per customer

Per customer

page 36

UNFCCC

	PASTE BAKED @ 1000 °C					
	Property	Unit	Standard	Typical		
	Ash Content	%	< 8	7.3		
	Fixed Carbon Content	%	> 90	93		
	Apparent Density	g/cm ³	> 1.35	1.4		
	Relative Density	g/cm ³	> 1.8	1.87		
	Total Porosity	%	> 23	24.9		
	Specific Electrical Resistivity	Ohm.mm ² /m	< 80	65.7		
	Thermal Shock Resistance	k₩	> 12	12.5		
	Thermal Conductivity	W/mK	8.0 - 9.0	8.8		
	Specific Heat	J/g°C	> 0.7	0.75		
	Cold Crushing Strength	kg/cm ²	> 50	54		
	Bending Strength	kg/cm ²	30 - 50	46.4		
	Elasticity Modulus	kg/cm ² x 10 ⁴	3.0 - 5.0	4.4		
	Linear Coeff. of Thermal Expansion	20 - 950 °C		Nil		
Justification of the choice of data or description of measurement methods and procedures actually applied :						
Any comment:	Green paste is bought from the supplier and put into the electrodes. As					
	heat increases when it goes down the electrodes, it is baked before it					
	reaches the core of the furnace. The quality of green paste should be us for the comparison between the composition of the paste before and af the project activity, and for the calculation of emission factors.					

Data / Parameter:	Quality of SiMnb	Quality of SiMnb					
Data unit:	Text	Text					
Description:	Quality of SiMnb, properties	Quality of SiMnb, based on elementary analysis and other relevant properties					
Source of data used:	Project proponent	Project proponent					
Value applied:							
		Quality of SiMnb					
	SiMn Specific	SiMn Specifications (Contractual elements with customer):					
	Elei	ment	Max (%)	Min (%)	Typical (%)		
	Mn	Manganese	68*	65.0	66.7		
	Si	Silicon	18.0	16.0	17.1		
	С	Carbon	2.0	-	1.6		
	Р	Phosphorus	0.150	-	0.100		
	S	Sulphur	0.015	-	0.010		
		* Mn content of SiMn produced by furnaces 1 and 3 don't have a maximum Mn content allowed (because it is used for different applications)					

page 37

UNFCCC

Justification of the choice of	The specifications of the SiMn produced will be used to compare the
data or description of	quality of the SiMn produced before and after the project activity.
measurement methods and	
procedures actually applied :	
Any comment:	
measurement methods and procedures actually applied :	quality of the SiMn produced before and after the project activity.

Data / Parameter:	Quality of ore					
Data unit:	Text					
Description:	Quality of ore, based on	elementar	y analysis	and other	relevant p	properties
Source of data used:	Project proponent					
Value applied:						
		Qua	ality of ore			
	Composition (%) Mn	Fe	SiO2	CaO	MgO	Р
	Average 2003 38.2	4.4	5.0	15.1	3.6	0.017
Justification of the choice of	Measurement methods a	re the sam	e as the on	es that wi	ll be used	for the
data or description of	Quality of ore in the project (see section B.7.2). The value for 2003 is					
measurement methods and	used to facilitate the comparison with the quality of coal at the beginning					
procedures actually applied :	of the project activity.					
Any comment:						

Data / Parameter:	Quality of flux	es					
Data unit:	Text	Text					
Description:	Quality of fluxe properties	es, based o	on elemen	tary analy	sis and otl	ner releva	nt
Source of data used:	Project propone	ent					
Value applied:	Ouality of fluxes						
	Composition of Me	etal rich sla	g:				
	Composition (%)	Mn	С	Si	Fe	CaO	MgO
	Average 2003	11.7	0.6	19.8	0.9	24.3	4.7
	Composition of pe	llets:					
	Composition (%)	MnO	SiO2	CaO	MgO	FeO	С
	Average 2003	30.8	28.3	6.0	8.5	1.9	7.2
Justification of the choice of data or description of measurement methods and procedures actually applied :	Measurement methods are the same as the ones that will be used for the Quality of fluxes in the project (see section B.7.2). The value for 2003 is used to facilitate the comparison with the quality of coal at the beginning of the project activity.						
Any comment:	1						

B.6.3 Ex-ante calculation of emission reductions:

1. Grid electricity emission factor

page 38

The Grid electricity emission factor ($EF_{y,offisite}$ in tCO2e/MWh) for South Africa is estimated according to ACM0002, following the procedure described in section B.6.1. Detail of data and sources used is provided in Annex 3. The following table gives the results of the calculation of Operating margin, Build margin and Combined margin (i.e. $EF_{y,offiste}$):

Table 8: Grid electricity emission factor calculations

Results		
EF	tCO2/MWh	
OM	1.195	
BM	1.248	
CM	1.221	

2. Onsite and offsite emission factors; baseline emissions and emission reductions per furnace

If we apply equations provided in section B.6.1 with values provided in section B.6.2 we can obtain baseline emission factors $EF_{b,onsite}$ and $EF_{b,offsite}$. To calculate project emissions (and emission reductions), we assume the following:

- $QP_{y,monitored} = QP_{historic}$
- $EF_{y,onsite} = EF_{b,onsite} (tCO2e/SiMn)$
- $EF_{y,offiste} = EF_{b,offiste} (tCO2/MWh)$
- $sec_{p,y} = sec_b 0.4$ (MWh/tSiMn) i.e. savings of 0.4MWh/tSiMn in the project.

The results per furnace are provided in the table below:

Table 9: Baseline emissions and emission reductions per furnace

	RESULTS							
Furnace	QPhistoric (tSiMn/y)	secb (MWh/tSiMn)	EFb offiste (tCO2/tSiMn)	EFb onsite (tCO2/tSiMn)	EFb total (tCO2/tSiMn)	Average emissions at QPhistoric (tCO2/y)	ERs from elec savings at QPhistoric (tCO2/y)	
1	19,441	5.02	6.12	2.55	8.68	168,687	9,495	
3	19,326	5.00	6.11	2.62	8.73	168,768	9,439	
5	37,767	5.42	6.62	3.05	9.68	365,421	18,445	
6	20,337	5.40	6.60	2.94	9.54	193,931	9,933	
7	39,396	5.58	6.81	2.96	9.77	384,838	19,241	

3. Overall emissions

To compile the overall project emissions (PE) and emission reductions (ER) of the project, we sum in each year PE and ER for the furnaces that have been retrofitted in that year. As mentioned in section B.3, each furnace enters into the project boundary only once it is retrofitted. The following retrofitting schedule is used:

Table 10: Furnace retrofitting schedule

page 39

UNECO

	Furnace retrofitting schedule							
F	urnace #	1	3	5	6	7		
D	ate retrofit	2009	2005	2005	2008	2004		
	Year	Re	etrofitted	furnace c	operation	al?		
1	2004-05	0	0	0	0	1		
2	2005-06	0	1	1	0	1		
3	2006-07	0	1	1	0	1		
4	2007-08	0	1	1	0	1		
5	2008-09	0	1	1	1	1		
6	2009-10	1	1	1	1	1		
7	2010-11	1	1	1	1	1		
8 2011-12		1	1	1	1	1		
9	2112-13	1	1	1	1	1		
10	2013-14	1	1	1	1	1		

The overall results are given in section B.6.4

4. Uncertainty

AM0038 states that :

"The uncertainty will be assessed in line with the European Commission guidelines on monitoring and reporting of GHG emissions in iron and steel production and taken into account when calculating the onsite emissions".

The interpretation of the project participants, who wrote the methodology, is that uncertainty should be taken into account according to the monitoring and reporting guidelines that are used in the EU Emissions Trading Scheme (ETS) (further referred to as "EC monitoring guidelines"). This analysis has been done and is presented in annex 7. The main conclusion is that the monitoring system used in the project meets most of the requirements imposed by the monitoring tier that would apply to the project's plant, should it be covered by the EU ETS (see explanation of these tiers in paragraph a) below). These requirements could be met through the implementation of a rigorous monitoring system and efforts have been made on specific parameters with a higher uncertainty, such as the coke emission factor which has been determined on a project-specific basis.

However the project participants have been requested to clarify the uncertainty estimate and also to clarify how uncertainties have been incorporated in the emission reduction calculations. Using uncertainty in the calculations has the following issues:

a) EU ETS does not use uncertainty to correct calculated emissions

The EC monitoring guidelines contain different approaches for determining activity data, emission factors, oxidation and conversion factors. These approaches are referred to as tiers. The tier level depends on the type of activity and the production level. The resulting tier level sets the approach that the participants must follow to determine activity data, emission factors, oxidation and emission factors, unless the required level of accuracy is not technically feasible or would lead to unreasonable high costs.

The sequence is therefore: activity and production \rightarrow tier level [= monitoring method + maximum allowable uncertainty level] \rightarrow calculate uncertainties \rightarrow compare with required tier level¹⁶.

"Taken into account" means therefore that the tier approach proposed in the EU ETS will be followed in order to determine emissions. This leads to the selection of a tier level, which in turn gives guidance for the monitoring methodology. The applied monitoring methodology results in an emission estimate that reflects the required tier level, thus taking uncertainty into account (i.e. in the EU ETS taking uncertainty into account does not require corrections to calculated emissions to be made).

b) Reducing emissions for uncertainty levels is not statistically accurate

Both the EU ETS and the IPCC require that uncertainties are taken into account. In the EU ETS, monitoring systems must comply with a maximum allowable uncertainty. This uncertainty depends on type of activity and production level [see above]. The EU ETS does not require that emissions are "corrected" for uncertainty. Under the IPCC, Parties are required to improve the quality of their emission inventories, which includes the reduction of uncertainty, but does not require "correction" of emissions.

In statistics, "uncertainty" refers to the envelope around the "true" value of the measured parameter. The 95% confidence interval around the measured average states that 19 out of 20 measurements will fall into this interval. The uncertainty can be + or -. Working with the lowest value in the confidence range means therefore that you minimize the probability of working with the correct value. This is the reason that both the IPCC and the EU ETS use uncertainty only as a *qualitative* concept in order to improve the quality of emission estimates. Applying quantitative "corrections" in CDM means that emission reduction efforts in this instrument would be valued systematically lower than in other Kyoto instruments where this approach is not seen as statistically accurate. In other words, it creates a *bias*.

For the reasons above, making corrections to calculated emissions to take uncertainty into account is viewed as a statistically inaccurate approach. However, the project participants have been required to make these corrections and therefore will **discount** *onsite emission reductions* by the uncertainty of overall onsite emissions, which has been calculated at 9.0% (see tables 11 and 12).

Notes:

- The project is an electricity saving project (affecting offsite emissions) and onsite emissions should not be affected significantly by the project. If onsite emissions increase, project participants will be penalised as these emissions count as project emissions. If onsite emissions decrease, project participants will also be penalised through the 9.0% discount factor on the emission reductions.
- The uncertainty that will be used for the calculations during the whole crediting period should be this 9.0% figure, determined *ex ante*. Table 12 illustrates the calculations for furnace 7 (the first one that was retrofitted), but results would be the same for other furnaces.

¹⁶ See EC monitoring guidelines, section 4.2.2.1.4 p12 (for the determination of the tiers) and section 4.3 pp19-21 (for the use of uncertainty).

page 41

Table 11: Determination of the uncertainty of activity data and emission factors for parameters used in the calculation of onsite emissions

	Parameters uncertainties							
Reductant	Uncertainty	Source						
Activity data								
Coal	2.5%	Based on 2% rated accuracy of load cells (which measure the tonnes of each raw material in each batch). Other possible sources of uncertainty (associated to procedures/way instruments are used) will be minimised						
Coke	2.5%	by calibrating load cells inline with manufacturer's requirements and using appropriate QA and QC procedures which will be integrated into the plant's ISO 14001 management system						
Paste	2.0%	 Number of paste cylinders put in the electrodes is recorded accurately (each time a cylinder is put in) Weight of each cylinder is based on weighing trucks on the weighbridge and dividing total weight by number of cylinders. While a daily average of paste cylinders' weight would have a relatively high uncertainty (because only a few cylinders are used every day and the weight of an individual cylinder may vary by a few %), a monthly average should give a measurement of monthly paste consumption with an uncertainty below 2%. The weighbridge is calibrated regularly (every 2 years) by an external company. 						
Emission fac	tors							
Coal	10.0%	IPCC (2006) Vol3, Ch4, section 4.3.3.1 page 4.39						
Coke	4.0%	Based on the maximum variation of monthly measurements of coke fixed carbon (%) in a given year. This is a conservative (high) uncertainty, as the variation of monthly measurements is not only due to uncertainties of measurement but also real variation in coke fixed carbon.						
Paste	5.0%	Emission factor of the paste is provided by the paste supplier without uncertainty range. A high uncertainty has been assumed						

	nple for furnace 7. Uncertainties have been calculated by
combining uncertainties of each source	of onsite emissions according to IPCC ¹⁷ .

Overall unce						
	Coal use Coke use Paste use Total					$Di = \sqrt{Bi^2 + Ci^2}$
Onsite baseline emissions #7 1997-2003 (tCO2)	711,726	59,421	43,899	815,046	А	$Di = \sqrt{Bi^2 + Ci^2}$
Uncertainty activity data	2.5%	2.5%	2.0%		В	$Ei = Di * \frac{Ai}{2}$
Uncertainty emission factors	10.0%	4.0%	5.0%		с	A4
Combined uncertainty	10.3%	4.7%	5.4%		D	$E4 = \sqrt{E1^2 + E2^2 + E3^2}$
Combined uncertainty as % of total emissions	9.0%	0.3%	0.3%	9.0%	E	2. (2. 22 22
	1	2	3	4		

B.6.4 Summary of the ex-ante estimation of emission reductions:

Table 13: Ex ante estimation of overall project annual baseline and project emissions, leakage

¹⁷ See the following documents:

Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Reporting instructions, Annex 1;
 and

[•] IPCC, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, Appendix 6A.1

UNFOCC

page 42

	Ex ante estimation of annual BE, PE, L and ER for all furnaces							
	Year	Estimation of baseline emissions (tonnes of CO ₂ e)	Estimation of project activity emissions (tonnes of CO2e)	Estimation of leakage (tonnes of CO2e)	Estimation of overall emission reductions (tonnes of CO2e)			
1	2004-05	384,838	365,596	0	19,241			
2	2005-06	919,027	871,902	0	47,125			
3	2006-07	919,027	871,902	0	47,125			
4	2007-08	919,027	871,902	0	47,125			
5	2008-09	1,112,958	1,055,900	0	57,058			
6	2009-10	1,281,644	1,215,091	0	66,553			
7	2010-11	1,281,644	1,215,091	0	66,553			
8	2011-12	1,281,644	1,215,091	0	66,553			
9	2112-13	1,281,644	1,215,091	0	66,553			
10	2013-14	1,281,644	1,215,091	0	66,553			
	tal (tonnes of CO2e)	10,663,097	10,112,659	0	550,438			

B.7 Application of the monitoring methodology and description of the monitoring plan:

B.7.1. Data and parameters monitored:

Preliminary note:

As mentioned in section B.6.3, expected emission reductions are calculated by assuming the following:

- $QP_{y,monitored} = QP_{historic}$
- $EF_{y,onsite} = EF_{b,onsite} (tCO2e/SiMn)$
- $EF_{y,offiste} = EF_{b,offiste} (tCO2/MWh)$
- $\sec_{p,y} = \sec_b 0.4$ (MWh/tSiMn) i.e. savings of 0.4MWh/tSiMn in the project.

The value of QP_{historic}, EF_{b,onsite}, EF_{b,offiste} and sec_b –are given in table 9.

This means that:

- Activity data (EC_y, Q_{pcoal,y}, Q_{pcoke}, Q_{ppaste}) are based on the same specific consumptions as in the baseline (except EC_y which is adjusted by the electricity savings of the project) and multiplied by QP_{historic}.
- Emission factors (EF_{pcoal}, EF_{pcoke}, EF_{ppaste}) are equal to the average emission factors in the baseline and Grid emission factor (EF_{yooffsite}) is the same as in the baseline

Data / Parameter:	QPy,monitored
Data unit:	Tonnes of SiMn/year
Description:	Quantity of SiMn production in year y during the project activity
Source of data to be	Project proponent
used:	

Value of data applied	We assume that QPy,monitored = QPhistoric (see preliminary note above).
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Data will be monitored at each tapping of the furnace by weighing metal ladles
measurement	on a weighing platform. The weighing platform will be maintained and
methods and	calibrated regularly in line with the manufacturer's requirements.
procedures to be	
applied:	
QA/QC procedures to	Measured data will be cross-checked with product sales records.
be applied:	
Any comment:	

Data / Parameter:	ECy
Data unit:	MWh/year
Description:	Annual grid electricity consumption by the submerged electric arc furnace
Source of data to be	Project proponent
used:	
Value of data applied	See preliminary note above.
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Electricity consumption will be metered continuously on individual furnaces
measurement	by an electricity meter and recorded monthly. The meters will be maintained
methods and	and calibrated regularly in line with the manufacturer's requirements.
procedures to be	
applied:	
QA/QC procedures to	Consumption of each furnace will be cross-checked monthly with total
be applied:	electricity bills.
Any comment:	

Data / Parameter:	Qpcoal,y
Data unit:	Tonnes of coal/year
Description:	Annual consumption of coal used as reductant in the submerged electric arc
	furnace
Source of data to be	Project proponent
used:	
Value of data applied	See preliminary note above.
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	The amount of coal put in each batch is weighed in hoppers with load cells,
measurement	

UNFCCC

CDM – Executive Board

methods and procedures to be applied:	and recorded daily. The load cells will be maintained and calibrated regularly in line with the manufacturer's requirements.
QA/QC procedures to	
be applied:	
Any comment:	

Data / Parameter:	Qpcoke,y
Data unit:	Tonnes of coke/year
Description:	Annual consumption of coke used as reductant in the submerged electric arc furnace
Source of data to be used:	Project proponent
Value of data applied for the purpose of calculating expected emission reductions in section B.5	See preliminary note above.
Description of measurement methods and procedures to be applied:	The amount of coke put in each batch is weighed in hoppers with load cells, and recorded daily. The load cells will be maintained and calibrated regularly in line with the manufacturer's requirements.
QA/QC procedures to be applied: Any comment:	

Data / Parameter:	Qppaste,y
Data unit:	Tonnes of paste/year
Description:	Annual consumption of electrode paste used as electrode in the submerged
	electric arc furnace
Source of data to be	Project proponent
used:	
Value of data applied	See preliminary note above.
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	The number of paste cylinders put into the electrode is logged each time a new
measurement	cylinder is used.
methods and	The average weight of each cylinder is calculated based on weighing paste
procedures to be	trucks (arriving at the facility) on a weighbridge and dividing total weight by
applied:	number of cylinders.
QA/QC procedures to	The weighbridge will be maintained and calibrated regularly in line with the
be applied:	manufacturer's requirements to ensure its accuracy. Average weight of each

CDM – Executive Board

	cylinder will be compared to indications of the supplier.
Any comment:	

Data / Parameter:	EFpcoal,y
Data unit:	tCO2/t coal
Description:	Emission factor applied for the coal consumed as reductant in year y
Source of data to be	IPCC (2006) – Vol3, Ch4, section 4.3.3.2, table 4.6 page 4.37
used:	
Value of data applied	3.1
for the purpose of	See preliminary note above.
calculating expected	
emission reductions in	
section B.5	
Description of	The 2006 IPCC value of 3.1tCO2/t coal will be used in the project.
measurement	
methods and	
procedures to be	
applied:	
QA/QC procedures to	
be applied:	
Any comment:	IPCC data will be used to ensure consistency with the emission factor
	used in the baseline. Note that project-specific values are expected to be
	lower than IPCC values, and therefore taking project-specific values for
	EFpcoal,y wouldn't be conservative.

Data / Parameter:	EFpcoke,y
Data unit:	tCO2/t coke
Description:	Emission factor applied for the coke consumed as reductant in year y
Source of data to be	Carbon content provided by laboratory analyses
used:	Carbon content of volatiles from IPCC (2006)
Value of data applied	See preliminary note above.
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Coke samples are prepared at Transalloys and sent to the laboratory (at
measurement	the moment from neighbouring facility at Highveld) for analysis of
methods and	volatile and fix carbon content. Monthly running averages of carbon
procedures to be	contents are used for the calculation of a monthly emission factor.
applied:	
	This emission factor is calculated using equation 4.19, p4.33 of IPCC
	(2006):

UNFCCC

	EQUATION 4.19 CARBON CONTENT OF FERROALLOY REDUCTING AGENTS Total C-content in reducing agent i = Fix C in i + Content of volatiles in i • Cv
	Where: Cv = Carbon content in volatiles. Unless other information is available. Cv = 0.65 is used for coal and
	0.80 for coke.
	The annual emission factor is calculated as the average of monthly
	emission factors and used for emission calculations.
QA/QC procedures to	Lab analyses are done according to applicable national and international
be applied:	standards.
	If values are missing or inconsistent for some months, the average of
	previous and next 3 months will be used.
Any comment:	This project-specific approach is preferred to IPCC values

Data / Parameter:	EFppaste,y
Data unit:	tCO2/t of carbon paste
Description:	Emission factor applied for the electrode paste consumed as electrode in
	year y
Source of data to be	Supplier (and IPCC/external literature reference)
used:	
Value of data applied	3.32
for the purpose of	See preliminary note above
calculating expected	
emission reductions in	
section B.5	
Description of	This emission factor will be calculated using equation 4.19, p4.33 of
measurement	IPCC (2006):
methods and	
procedures to be	EQUATION 4.19
applied:	CARBON CONTENT OF FERROALLOY REDUCTING AGENTS Total C-content in reducing agent i = Fix C in i + Content of volatiles in i • Cv
	Where:
	v netc. Cv = Carbon content in volatiles. Unless other information is available, Cv = 0.65 is used for coal and 0.80 for coke.
	Fix carbon and volatiles content will be taken from the supplier. Carbon
	content in the volatiles (Cv) will be taken from supplier if available; if
	not available, the same Cv as for coke will be taken (see the justification
	in the table of EF _{bpaste}).
QA/QC procedures to	This project-specific value will be compared to EF _{bpaste,y} and the
be applied:	maximum between the two values will be taken for EF _{ppaste,y} .
Any comment:	(F
Data / Parameter:	Quality of coalp
Data unit:	Mass fraction of each component (%m/m)

Data / Parameter:	Quality of coalp
Data unit:	Mass fraction of each component (%m/m)

page 47

UNFCCC

Description:	Quality of coal based on elementary analysis and other relevant properties
Source of data to be	Project proponent
used:	
Value of data applied	Not applicable
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Fixed carbon, volatiles, S and P contents will be monitored at the start of the
measurement	project activity. This will be done by lab analyses according to applicable
methods and	national and international standards.
procedures to be	
applied:	
QA/QC procedures to	Project proponent's lab analyses are preferred to supplier's data and are used
be applied:	to determine the emission factor of the coal EFpcoal,y.
Any comment:	

Data / Parameter:	Quality of cokep
Data unit:	Mass fraction of each component (%m/m)
Description:	Quality of coke based on elementary analysis and other relevant properties
Source of data to be used:	Project proponent
Value of data applied for the purpose of	Not applicable
calculating expected emission reductions in section B.5	
Description of measurement methods and	Fixed carbon, volatiles, S and P contents will be monitored at the start of the project activity. This will be done by lab analyses according to applicable patients and intermediated
procedures to be applied:	applicable national and international standards.
QA/QC procedures to be applied:	Project proponent's lab analyses are preferred to supplier's data and are used to determine the emission factor of the coal EFpcoal,y.
Any comment:	

Data / Parameter:	Quality of electrode pastep
Data unit:	Text
Description:	Quality of electrode paste based on elementary analyses and other relevant
	properties
Source of data to be	Supplier
used:	
Value of data applied	Not applicable
for the purpose of	

12

calculating expected	
emission reductions in	
section B.5	
Description of	The quality of the paste will be taken from supplier's data at the time of
measurement	purchase
methods and	
procedures to be	
applied:	
QA/QC procedures to	Results will be compared to factors supplied by IPCC or other suppliers
be applied:	
Any comment:	

Data / Parameter:	EFy,offsite			
Data unit:	tCO2/MWh			
Description:	Grid emission factor			
Source of data to be used:				
Value of data applied for the purpose of calculating expected emission reductions in section B.5	The following table gives the results of the calculation of Operating margin, Build margin and Combined margin: Table 8: Grid electricity emission factor calculations Results			
	EF tCO2/MWh OM 1.195 BM 1.248 CM 1.221 The factor of 1.221tCO2/MWh will be used during the whole crediting period.			
Description of measurement methods and procedures to be applied:	The Grid electricity emission factor (EFy,offsite in tCO2e/MWh) for South Africa is established ex ante according to ACM0002. Methodological choices are described in section B.6.1 and detail of the data and assumptions used is provided in Annex 3.			
QA/QC procedures to be applied:	Transparent data is available and referenced. For some parameters where no data is available, conservative assumptions are made.			
Any comment:				

Data / Parameter:	Quality of SiMnp
Data unit:	Text
Description:	Quality of SiMn
Source of data to be	Project proponent
used:	
Value of data applied	Not applicable

UNFOCC

CDM – Executive Board

12

for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	A sample will be lab analysed periodically to ensure that the quality remains
measurement	between pre-determined specifications for Mn, C, Si, P and S.
methods and	
procedures to be	
applied:	
QA/QC procedures to	Lab analyses will be undertaken to national or international standards to ensure
be applied:	accuracy
Any comment:	

Data / Parameter:	Quality of ore
Data unit:	Text
Description:	Quality of ore
Source of data to be used:	Project proponent
Value of data applied	Not applicable
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	A sample will be lab analysed at least monthly to determine the composition of
measurement	the ore (e.g. contents in Mn, Fe, SiO2, CaO)
methods and	
procedures to be	
applied:	
QA/QC procedures to	Lab analyses will be undertaken to national or international standards to ensure
be applied:	accuracy
Any comment:	

Data / Parameter:	Quality of fluxes
Data unit:	Text
Description:	Quality of fluxes
Source of data to be	Project proponent
used:	
Value of data applied	Not applicable
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	A sample will be lab analysed at least monthly to determine the composition of
measurement	the ore (e.g. contents in Mn, Fe, SiO2, CaO)
methods and	
procedures to be	

page 50

UNFCC

applied:	
QA/QC procedures to	Lab analyses will be undertaken to national or international standards to ensure
be applied:	accuracy
Any comment:	

B.7.2 Description of the monitoring plan:

The monitoring plan gives the actions necessary to record all the variables and factors required by methodology AM0038, version 1, 30 September 2006 (no monitoring is required for the grid emission factor calculation according to ACM0002.

The plan is based on the detailed information contained in section B.7.1 above. Most of the monitoring requirements of the methodology are in line with the kind of information routinely collected by Transalloys, so internalising the procedures should be simple and straightforward. The ISO 14001 management system implemented by Transalloys and its parent company Highveld will also help ensure that quality procedures are in place.

All data will be archived electronically, and backed up regularly. It will be kept for the full crediting period, plus two years after the end of the crediting period or the last issuance of CERs for this project activity (whichever occurs later).

Project staff will be trained regularly in order to satisfactorily fulfill their monitoring obligations. The authority and responsibility for project management, monitoring, measurement and reporting will be agreed between the project participants and formalised. Detailed procedures for calibration of monitoring equipment, maintenance of monitoring equipment and installations, and for record handling will be established. Specific procedures for CDM monitoring, GHG internal auditing and reporting will be agreed between Transalloys and EcoSecurities and incorporated into the existing Quality assurance system.

The table below indicates the main responsibilities of the persons involved in the monitoring:

Task	On-site technicians	Laboratory	QC manager	CDM Programme Manager	Management (Project Developer)	EcoSecurities
Collect Data and Send samples to lab	E		R	I		
Perform lab analyses		E	R	I		

Table 14: Overview of persons responsible for implementing the monitoring plan

Enter data into Spreadsheet	I	E	R		
Make monitoring report			R	I	E
Archive data & reports	I	E	R		
Calibration/ Maintenance	E	R	I		

E = responsible for executing data collection

 \mathbf{R} = responsible for overseeing and assuring quality

I = to be informed

B.8 Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person(s)/entity(ies)

The baseline study and the monitoring methodology were concluded on 02/11/06. The entity determining the baseline study and the monitoring methodology and participating in the project as the Carbon Advisor is EcoSecurities Group Plc, Ireland, listed in Annex 1 of this document (contact: Arnaud Viel, arnaud@ecosecurities.com).

UNFCCC

SECTION C. Duration of the project activity / crediting period

C.1 Duration of the project activity:

C.1.1. Starting date of the project activity:

01 October 2004

C.1.2. Expected operational lifetime of the project activity:

More than 20 years

C.2 Choice of the <u>crediting period</u> and related information:			
C.2.1.	Renewable crediting period		
	C.2.1.1.	Starting date of the first crediting period:	
Not applicable			
	C.2.1.2.	Length of the first crediting period:	
Not applicable			
C.2.2.	Fixed credit	ing period:	
	C.2.2.1.	Starting date:	

01 October 2004

C.2.2.2. Length:

10 years

page 53

UNFCC

SECTION D. Environmental impacts

D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

The project is not subject in South Africa to requirements for an environmental impact assessment. The project is not expected to have any significant negative environmental impacts.

It will have a positive impact nationally by reducing the need for grid electricity consumption per unit manganese alloy produced. Consequently there will be a reduced demand for predominantly coal fired electricity, and mitigating the need to dedicate/build up to 30MW(+) of additional capacity to continue to supply this process alone. South Africa is projected to require significant new build in the near future. The project will predominantly reduce CO_2 emissions from the power sector, but also local pollutants such as dust and SOx.

A benefit not quantified here may be the improved efficiency of manganese extraction from the raw ore. There will also be a reduction in the amount of ore required to produce a unit of alloy product, requiring less mining, processing, transport, and energy use to provide this ore. No emissions reductions are claimed here for this benefit, but there is a positive environmental impact arising as a result.

It is not sure whether the project will lead to a reduction of coal and coke used as reductants. The impact on the environment of this component could therefore go either way.

One significant local environmental improvement will be the ability of the new furnaces to better manage dust emissions from the furnaces off gases that will allow a reduced emission to the local environment of particulates. This is even more important for furnace 5 where a new offtake system has been installed.

D.2. If environmental impacts are considered significant by the project participants or the <u>host</u> <u>Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

Not applicable

page 54

UVE00

SECTION E. <u>Stakeholders'</u> comments

E.1. Brief description how comments by local <u>stakeholders</u> have been invited and compiled:

A stakeholders' Meeting was held in a meeting room at Transalloys plant on the 27th of October 2006, from 11h00 to 16h00. Personal invitations where send to representatives that where selected to represent the different stakeholder groups as part of the periodic open day that was established to provide ongoing information about Transalloys operations.

The stakeholder meeting was integrated in the open day to ensure a large turnout. The program consisted of:

- Presentations by several line managers explaining the different stages of the production process, followed by Q&A sessions;
- A presentation on the Transalloys energy efficiency and how it will be developed under the CDM, followed by a Q&A session;
- A tour of the plant.

Mr L. Jacobs, manager at Transalloys, introduced himself, his company, the managers that would speak and the Ecosecurities consultant that delivered the presentation on the CDM project (5-10 minutes).

After the presentations by the line managers Henk Sa, Ecosecurities local representative, delivered the presentation that took the audience from the global picture down to the project at hand:

- Climate Change, GHGs and consequences;
- Answer by International Community The Kyoto Protocol;
- The mechanisms of the Protocol;
- The Transalloys CDM project.

The presentation per se was delivered in 20-30 minutes, uninterrupted. Questions and comments were asked from the public and have been recorded in the subsequent section 2. (20-30 minutes).

After the Q&A session L. Jacobs invited the people present to join him on a tour of the plant followed by refreshment in the boardroom.

Evidence of the event is provided in Annex 5.

E.2. Summary of the comments received:

The stakeholders present (list in Annex 5) were asked to voice any question or comment that they may have about the Transalloys CDM project or the presentation in general:

1. Mr. S. van Niekerk, Managing Director of Transalloys:

Where does the data from the graph you showed on increasing GHG levels and rising temperatures come from?

- Mr Henk Sa for EcoSecurities answered the question: Historic data on the composition of the atmosphere can be collected in several different ways. The most common method is by analyzing ice samples that where deposited thousands of years ago.
- 2. Mr J. Makena, from the Emahahleni Municipal Council:

What measures have been taken to prepare countries for the effects of climate change, like flooding?

- Mr. Makena his question was answered. The Kyoto protocol does not only aim to curb anthropogenic GHG emissions but it also aims to prepare countries for the effects of climate change via a mechanism called 'adaptation'. For example countries that might be effected by raising sea levels are being advised to take this into account when developing their infrastructure.
- 3. Mr. S Zwane, Clewer Primary School:

Was the impact of underdeveloped countries taken into consideration when the data on global warming was put to together?

Answer provided: Yes, that is why developing countries do not have emission reduction targets under the Kyoto protocol.

E.3. Report on how due account was taken of any comments received:

As explained in Section E.2, no comments were received specifically on the project.

page 56

UNFCCC

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY

Organization:	Highveld Steel and Vanadium Corporation Limited
Street/P.O.Box:	Clewer Road
Building:	Transalloys
City:	Witbank
State/Region:	Mpumalanga
Postfix/ZIP:	1035
Country:	South Africa
Telephone:	013-6935021
FAX:	013-6938034
E-Mail:	louj@hiveld.co.za
URL:	
Represented by:	
Title:	Manager
Salutation:	Mr.
Last Name:	Jacob
Middle Name:	
First Name:	Lou
Department:	Transalloys
Mobile:	0827717393
Direct FAX:	013-6938034
Direct tel:	013-6935021
Personal E-Mail:	louj@hiveld.co.za

Project Annex 1 participant:

Organization:	EcoSecurities Group Plc.
Street/P.O.Box:	40 Dawson Street
Building:	
City:	Dublin
State/Region:	
Postfix/ZIP:	02
Country:	Ireland
Telephone:	+353 1613 9814
FAX:	+353 1672 4716
E-Mail:	info@ecosecurities.com
URL:	www.ecosecurities.com
Represented by:	
Title:	COO & President
Salutation:	Dr.
Last Name:	Moura Costa

Middle Name:	
First Name:	Pedro
Mobile:	
Direct FAX:	
Direct tel:	+44 1865 202 635
Personal E-Mail:	<u>cdm@ecosecurities.com</u>

page 58

UNFOOD

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

This project will not receive any public funding from Annex 1 parties.

page 59

UNFCCC

Annex 3

BASELINE INFORMATION

1. Data and sources used to calculate the grid emission factor are given below:

Plant and type of fuel	OM BM plant? plant?		Year of	Licensed	Net er	ergy sent out (MV	Vh)		Fuel consu	mption	
		0=n)	commission	capacity (MW)	2002	2003	2004	2002	2003	2004	Unit
Grand Total				43 034	204,511,108	219,198,686	226,393,919				
Eskom generation				39 810	196,067,796	210,218,785	217,919,213				
Coal fired stations	1		1075 (1)	35 607	181,749,299	194,046,490	203,564,592	96,460	104,370	109,508	kt
Arnot	1		1975 (June)	1 980	11,974,764	14,135,237	13,032,188				kt
Camden	1		1967 (April)	1 520			05 450 040				kt
Duvha	1		1980	3 450	23,320,444	21,384,335	25,450,613				kt
Grootvlei	1		1969	1 130	40 750 007	40.000.005	40.007.470				kt
Hendrina	1		1970	1 895	12,752,987	12,329,325	12,037,179				kt
Kendal	1 1		1982 (July)	3 840 891	26,006,905	27,820,202	27,005,053				kt
Komati Kriel	1		1961 1979	2 850	19,165,265	18,347,304	19,866,814				kt kt
		4								12,269	
Lethabo Maiuba	1	1 1	1990 (Dec) 1996 (April)	3 558 3 843	22,019,627 4,600,976	23,505,543 10.015.560	22,807,524 12,539,663			6,746	kt kt
Majuba Matimba	1	1	1996 (April) 1987	3 843	4,600,976 25,145,393	26,510,802	26,894,454			14,468	kt kt
Matla	1		1983 (July)	3 450	25,577,292	25,802,219				14,400	kt
Tutuka	1	1	1985 (July) 1985 (June)	3 450	11,185,646	14,195,963	25,673,648 18,257,456			9.822	kt
Gas turbine stations	1		1905 (Julie)	342	0	341	350			9,022	ĸı
Acacia	1		1976	171	0	299	305	0.00	3.55	3.62	ΤJ
PortRex	1		1976	171	0	42	305	0.00	0.50	0.53	TJ
Hydro power stations	1		1976	661	2,356,753	777,041	777,041	0.00	0.50	0.55	15
Gariep			1971	360	1,164,640	383,991	383,991				
Vanderkloof			1977 (March)	240	1,192,113	393,050	393,050	-	-	-	
Colleywobbles(Mbashe)			1977 (Ividi Citi)	42	1,132,113	333,030	353,030				
First Falls											
Second Falls				11							
Ncora				2							
Nuclear stations				1 800	11,961,744	12,662,591	13,365,123				
Koeberg			1984 (April)	1 800	11,961,744	12,662,591	13,365,123				
Pumped-storage stations	1		1504 (April)	1 400	0	2,732,322	212,107				
Drakensberg	1		1981	1 000	0	1,787,554	212,107				
Palmiet	1	1	1988	400	ŏ	944,768	212,107				
1 diffict		· ·	1300	400	U	344,700	212,107				
Municipal generation				1 837	1,218,826	1,326,122	1,040,945				
Coal fired stations	1			1 323	1,201,006	1,038,433	1,027,337				
Athlone	1		n/a	180	76,596	76,596	10,230	38	38	5	kt
Kroonstad	1			30							kt
Swartkops	1			240							kt
Bloemfontein	1		n/a	103	8,233	19,444	5,931	4	10	3	kt
Orlando	1			300							kt
Rooiwal	1		n/a	300	949.078	826.217	895.000	475	413	448	kt
Pretoria West	1		n/a	170	167,099	116,176	116,176	84	58	58	kt
Gas turbine stations	1			330	7,189	3,654	2,976				
Roggebaai	1		n/a	50	2,787	2,787	1,141	31.35	31.35	12.84	TJ
Athlone	1		n/a	40	867	867	1,827	9.75	9.75	20.55	ΤJ
Port Elizabeth	1		n/a	40						0.09	ΤJ
Johannesburg	1		n/a	176	3,535		-	39.77			ΤJ
Pretoria West	1			24	-,						TJ
Hydro power stations				4	10,632	10,632	10,632				10
Lydenburg			n/a	2	6,000	6,000	6,000				
Ceres			n/a	1	1,082	1,082	1,082				
Piet Retief			n/a	1	3,550	3,550	3,550		-		
Pumped-storage stations	1			180	0	273,403	0				
Steenbras	1		n/a	180	0	273,403	0				
Private generation				1 387	7,224,486	7,653,779	7,433,761				_
Bagasse / coal fired stations				105	259,317	259,317	192,337	(assum	ed pure bagas	ise)	
Tongaat-Hulett Amatikulu			n/a	12	26,781	26,781	26,781	-	-		
Tongaat Hulett - Darnall			n/a	12	21,704	21,704	21,704	-	-	-	
Tongaat Hulett - Felixton			n/a	32	66,510	66,510	66,510	-	-	-	
Tongaat Hulett - Maidstone Mill			n/a	29	67,397	67,397	67,397	-	-	-	
Transvaal Suiker Ltd			n/a	20	76,925	76,925	9,945	-	-	-	
Coal fired stations	1			1 279	6,950,506	7,379,448	7,226,761				
Kelvin	1		n/a	540	1,721,353	1,721,353	1,568,666	861	861	784	kt
Sasol Synth Fuels	1		n/a	600	4,421,074	4,738,677	4,738,677	2,211	2.369	2.369	kt
Sasol Chem Ind	1		n/a	139	808,079	919,418	919,418	404	460	2,303	kt
Hydro power stations			11/a	139	14,663	15,014	14,663	404	400	400	ni.
invaro power stations			n/a	3	14,663	15,014	14,663				

page 60

Sources	Sources					ission factor	S		
NER supply side statistics (1)	IER supply side statistics (1)								
Areas shaded: where net electricity sent out is ne		NCV	EF	OX		EF			
Eskom annual report 2005	5			TJ/t fuel	tC/TJ	%	Value		
NER pers.comm 2005 (2)			Coal	0.02509	25.8	98.0%	2.326	tCO2/t coa	
Using rated efficiencies on www.eskom.co.za	%	i.e Mwhprod	Gas		15.3	99.5%	55.8	tCO2/TJ	
(conservative):	70	/TJcons	Source:	1	2		Calculated		
Acacia	30.30%	84.2							
Port Rex	30.30%	84.2	List of sources:						
Assuming conservative (high) efficiency:	32.00%	88.9							
We calculate 2004 Eksom average specific coal	consumption f	rom	1 IPCC (1996) Table 1-2 (Value for South Africa)						
i) Eskom aggregate coal consumption (ktcoal) ii) NER net electricity sent (MWh)	·			2 IPCC (1996) Tab					
2004	0.000537952	ktcoal/MWhcoal	Conversion factor	277.7778	3 MWh/TJ				
and assume it to be the same as Actual Eskom b	and assume it to be the same as Actual Eskom build margin spec. coal								
consumption (because actual marginal plants = o	old inefficient of	coal)							
Assuming conservative (low) specific coal									

Detail of sources and assumptions used

All sources and assumptions used are indicated at the bottom of the previous page, with one color for each source of information. The text below explains this further.

Data available

Emission factors (tCO2/t fuel) are country-specific IPCC values for coal and gas in South Africa. Detailed data is available on electricity generation but not on fossil fuel consumption. The table below summarises the information available.

Type of plant	Electricity generation	Fossil fuel consumption	Commissioning dates
		Detailed information not publicly available. Other information available:	
Eskom plants	Detailed information (plant by plant) available from NER Electricity Supply statistics for 2002-	 Coal: Aggregate consumption figure available from Eskom's annual reports. Gas: Rated efficiency available from Eskom's website¹⁹ 	Obtained from NER (personal communication)
Municipal and private	2003-2004 ¹⁸	No compilation of data available. Obtaining deplant would be excessively costly and may not available.	

Given the lack of data on fossil fuel consumption and commissioning dates, some assumptions have to be made for the calculations of both operating and build margin emission factors.

19 www.eskom.co.za

¹⁸ National Electricity Regulator, *Electricity Supply Statistics for South Africa*. Available in brochures from NER for years 2002 (p14-15), 2003 (p15-16) (p14-15) and 2004

page 61

UNFCCC

Assumptions for operating margin

Plant owner	Plant type	Assumption on fuel consumption	Conservativeness	Materiality
Eskom	Coal	Aggregate data is available and used (no need for assumptions)	(No assumptions need to be made made)	Key parameter (these plants represent 90% of South African generation)
Eskom	Gas	We assume the actual efficiency to be equal to the rated efficiency	This is an extremely conservative approach as actual efficiency is well below rated efficiency	These plants represent less than 0.0002% of South African generation
M	Coal	We assume the efficiency to be a bit higher than the average efficiency of Eskom plants (0.50 tcoal/MWh compared to 0.53 to 0.54 tcoal/MWh for Eskom plants)	This is a conservative assumption as there is no evidence that municipal and private plants would be more efficient than Eskom plants (as they are smaller, they might in fact be less efficient)	These plants
Municipal and private		We assume bagasse-coal plants to be pure bagasse	Conservative	represent altogether only 4% of South
	Gas	We assume the efficiency to be a bit higher than the rated efficiency of Eskom plants (32.00% compared to 30.30% for Eskom plants)	This is an extremely conservative approach as actual efficiency is well below rated efficiency + there is no evidence that municipal and private plants would be more efficient than Eskom plants	African generation

Assumptions for build margin

Parameter	Assumption	Conservativeness and materiality
Selection of build margin plants	Only Eskom plants are taken for the build margin (last 5, as it represents more generation than the last 20%) because the commissioning date of other plants is not available. This includes 4 coal plants and 1 (small) pumped hydro.	 Eksom plants represent 96% of South African generation Out of the remaining 4% generation (by municipal and private), 94 to 97% is coal-based Taking Eskom plants can be considered representative of the overall South African grid (essentially, the grid is almost pure coal, both in Eskom plants and others)
Coal consumptio n	We assume Eskom build margin coal plants to be as efficient as 2004 average Eskom coal plants	Build margin plants would usually be more efficient than average plants because they are more recent. However, the situation in South Africa is particular as build margin plants are in fact big, old, inefficient coal-fired power plants that had been shut down decades ago and are being put back online (see PDD section B.6 > $1.1.3$ > STEP 2). This process started in 2005 and therefore the 2004 average figure (which has been used and does not include those old plants) is very likely to be below the actual 2005 build margin figure (which is not available), thus ensuring the conservativeness of the EF _{BM} used.

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Versio

page 62

2. <u>Historic production data and emissions factors</u> used to calculate baseline emissions are given in the next two pages.

TRANSALLOYS PROJECT - BASELINE EMISSIONS CALCULATIONS

	ASSUMPTIONS									
	Reductant EF (tCO2/t reductant) CEF (tCO2/MWh)									
	Coal Coke Paste Electricity									
1997	3.1	3.09	3.32	1.221						
1998	3.1	3.13	3.32	1.221						
1999	3.1	3.10	3.32	1.221						
2000	3.1	3.12	3.32	1.221						
2001	3.1	3.15	3.32	1.221						
2002	3.1	3.17	3.32	1.221						
2003	3.1	3.19	3.32	1.221						
Electricity	Electricity savings 0.40 MWh/tSiMn									
i.e.		0.49	tCO2/tSiMn							

	RESULTS												
Furnace	QPhistoric (tSiMn/y)	secb (MWh/tSiMn)	EFb offiste (tCO2/tSiMn)	EFb onsite (tCO2/tSiMn)	EFb total (tCO2/tSiMn)	Average emissions at QPhistoric (tCO2/y)	ERs from elec savings at QPhistoric (tCO2/y)						
1	19,441	5.02	6.12	2.55	8.68	168,687	9,495						
3	19,326	5.00	6.11	2.62	8.73	168,768	9,439						
5	37,767	5.42	6.62	3.05	9.68	365,421	18,445						
6	20,337	5.40	6.60	2.94	9.54	193,931	9,933						
7	39,396	5.58	6.81	2.96	9.77	384,838	19,241						

Furnace	Year	Production	Total red	uctant consum	ption (t/y)	Total elec.	To	tal CO2 from r	eductant (tCO)	2/y)	Total CO2
Turnace	rear	(tSiMn/y)	Coal	Coke	Paste	cons. (MWh/y)	Coal	Coke	Paste	TOTAL	from elec
	1997	21,685	14,538	1,480	1,127	115,511	45,068	4,573	3,747	53,388	141,039
	1998	7,506	4,494	554	350	41,735	13,931	1,733	1,164	16,828	50,958
	1999	21,779	13,005	1,652	1,086	111,837	40,316	5,123	3,611	49,049	136,553
1	2000	18,641	13,426	1,234	1,032	97,656	41,621	3,846	3,431	48,898	119,238
	2001	21,809	16,304	1,163	1,141	107,293	50,542	3,662	3,794	57,998	131,005
	2002	23,349	16,704	563	1,029	109,409	51,782	1,785	3,421	56,988	133,588
	2003	21,321	18,501	1,011	1,097	99,142	57,353	3,224	3,647	64,224	121,052
	Total	136,090	96.972	7.657	6.862	682,583	300.613	23,944	22.816	347.373	833.434

Furnace	Year	Production	Total reductant consumption (t/y)			Total elec. Total CO2 from reductant (tCO2/y)					Total CO2
Turnace	Tear	(tSiMn/y)	Coal	Coke	Paste	cons. (MWh/y)	Coal	Coke	Paste	TOTAL	from elec
	1997	21,930	15,064	1,718	1,136	115,381	46,698	5,308	3,777	55,784	140,880
	1998	9,518	5,862	803	487	51,814	18,172	2,512	1,619	22,303	63,265
	1999	17,680	11,529	1,479	946	93,474	35,740	4,586	3,145	43,472	114,132
2	2000	19,731	13,055	1,409	104	100,458	40,471	4,391	346	45,207	122,659
3	2001	22,660	17,863	1,234	1,147	111,287	55,375	3,885	3,814	63,074	135,881
	2002	22,159	16,871	836	1,025	104,833	52,300	2,650	3,408	58,358	128,001
	2003	21,601	19,475	973	956	99,678	60,373	3,103	3,179	66,654	121,707
	Total	135,279	99,719	8,452	5,801	676,925	309,129	26,435	19,288	354,852	826,525

Furnace	Year	Vear Production		uctant consum	ption (t/y)	Total elec.	tal elec. Total CO2 from reductant (tCO2/y)				Total CO2
Turnace	rear	(tSiMn/y)	Coal	Coke	Paste	cons. (MWh/y)	Coal	Coke	Paste	TOTAL	from elec
	1997	38,847	28,939	3,644	2,123	224,774	89,711	11,259	7,059	108,029	274,449
	1998	42,005	33,313	3,361	2,344	248,046	103,270	10,513	7,794	121,577	302,864
	1999	35,788	31,738	2,986	1,763	205,295	98,388	9,260	5,862	113,509	250,665
5	2000	35,877	33,574	2,656	2,045	214,388	104,079	8,277	6,799	119,156	261,768
5	2001	34,843	31,619	1,151	2,031	168,826	98,019	3,624	6,753	108,396	206,137
	2002	41,898	35,932	2,247	1,968	200,136	111,389	7,123	6,543	125,055	244,366
	2003	35,108	32,739	1,507	1,690	172,039	101,491	4,805	5,619	111,915	210,060
	Total	264,366	227,854	17,552	13,964	1,433,504	706,347	54,861	46,429	807,638	1,750,308

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Versio

CDM – Executive Board

page 63

Furnace	Furnace Year Pro		Total reductant consumption (t/y)		Total elec.	Total CO2 from reductant (tCO2/y)			2/y)	Total CO2	
Turnace	i cai	(tSiMn/y)	Coal	Coke	Paste	cons. (MWh/y)	Coal	Coke	Paste	TOTAL	from elec
	1997	22,571	17,345	1,734	1,175	130,113	53,770	5,358	3,907	63,034	158,868
	1998	24,188	16,586	2,245	1,275	136,458	51,417	7,022	4,239	62,678	166,615
	1999	8,238	5,764	788	417	44,755	17,868	2,444	1,386	21,698	54,646
6	2000	21,269	17,146	1,687	1,143	120,804	53,151	5,257	3,800	62,209	147,502
0	2001	21,846	19,936	1,002	958	107,474	61,802	3,155	3,185	68,142	131,226
	2002	22,618	20,993	823	975	119,525	65,078	2,609	3,242	70,929	145,940
	2003	21,632	20,195	1,118	1,028	110,109	62,605	3,565	3,418	69,587	134,443
	Total	142,362	117,965	9,397	6,971	769,238	365,690	29,409	23,178	418,277	939,240

Furnace	Year	Production	Total red	ictant consum	ption (t/y)	Total elec. Total CO2 from reductant (tCO2/y)					Total CO2
Fumace	rear	(tSiMn/y)	Coal	Coke	Paste	cons. (MWh/y)	Coal	Coke	Paste	TOTAL	from elec
	1997	40,685	31,098	3,702	2,023	231,635	96,404	11,438	6,726	114,568	282,826
	1998	42,399	31,741	4,172	2,045	256,158	98,397	13,050	6,799	118,247	312,769
	1999	44,477	37,165	3,517	2,123	260,410	115,212	10,906	7,059	133,176	317,961
7	2000	34,862	31,216	2,085	2,009	208,377	96,770	6,498	6,680	109,947	254,428
'	2001	31,933	26,698	1,964	1,543	173,106	82,764	6,184	5,130	94,078	211,362
	2002	43,700	37,788	1,880	1,739	216,880	117,143	5,959	5,782	128,884	264,810
	2003	37,717	33,883	1,689	1,721	192,187	105,037	5,386	5,722	116,145	234,660
	Total	275,773	229,589	19,009	13,203	1,538,753	711,726	59,421	43,899	815,046	1,878,817

Project annual measured value Default value (copied from input) Project fixed value (copied from input) Calculated value (copied from other sheet) Results

page 64

UNFCCC

Annex 4

MONITORING INFORMATION

This information is contained in section B.7.

1

1

1

١

page 65

UNFCCC

Annex 5

STAKEHOLDER CONSULTATION

Personal invitations were sent to representatives who were selected to represent the different stakeholder groups, as part of the periodic open day that was established to provide ongoing information about Transalloys operations.

A copy of the ad to publicise the event, the list of persons invited, the actual attendance list and a photo taken during the meeting are provided in this annex.

i anadioys	ISALLOYS I and Vanadium Corporation Limited)
Cordially invi	tes you to attend our
	en Day
	riday, 27 October 2006 at 11:00 in the ministration Building
	us on, or before the 9th October 2006 to
Tel: 013 693 8119, or fax: 013 6.	like Waton 97 411, or email <u>mikew@hiveld.co.za</u> Bukhus 8/9 or Fao: 013 659 7411
P	rogramme
11:00 Wekame 11:10 Raw Materials 11:20 Silica Manganuse Process 11:30 Perromanganuse Process 11:40 Finished Products 12:00 Banghouses 12:10 Environmental Lissus 12:20 Quantions & Answers	 L. C. Jacobi, Manager, Transalloyi L. Maxoko, Unit Manager D. Q. Beck, Unit Manager L. S. Kubboka, Unit Manager H. Banardo Jer, Unit Manager M. S. Mamakoko, Electrical Engineer D. Nell, Engineering Manager L. C. Jacobi, Manager, Transalloyi Plant Toor

page 66

UNFCCC

Organisation	Name	Contact No	Fax No	e-mail	PPE Needs	Confirmed
APOLCOM	Ms C Venter	Contact No		6-IIIali	IT L Necus	Comme
AI OECOINI	Mr W du Pisanie	017				
	Mr P Ncanazo	017				_
Buhle Bemvelo Environmental Group	Mr M Ngobeni	072				
	Mr Mzwakali	013				
	Mr J Bembe	015				
Canon Eng	Mr E Smit					_
Calibri Elig	Mr. K du Plessis					
Clewer Primary School	Mr S Zwane	013				
DEAT	Mr J van Graan	013				
DEAT	Mr C du Plooy	011				_
Eskom Customer Service	Mr D Madike	013				
Eskoni Gustomer Service	Ravas Nades	013				
	Alleta Nkuna	002				
Emalahleni Municipal Council	Ms L Strydom	013				_
	Mr Mbuke	013				
	Mr M Matlejoane	072				_
	Mr J Makena	013				_
	Mrs A Simelane	013				_
Environmental Justice Networking Forum	Mr I Mamapane	072				
r oram	Mr H Mashifane	013				
	Mr K Bashele	013				-
	Mr W Mamapane	013				-
	Mr E Mkhwanazi	013				-
	Mr T Fakude	072				-
J & I Recycling	Mr A. Maseko	082				-
Mpumalanga Aids Environmental	Mr C Markham	013				-
Forum	WI C Warkham	972				
r oram	Ms Y Masilela	0/2				
Witbank News	Ms M Boshoff	013				
Wildlife & Environment Society of SA	Mr M Suttill	013				
	in no oddan	083				
	Mr M Ngobeni	013				-
Highveld Steel	Mr A. de Nysschen	013				-
	Dr J. Pienaar	013				-
	Mr J. Theiss	013				
	Mr L.A. Aggenbach	013				_
	Mr S. Mafoane	013				_
	Ms A Diener	013				
	Dr D Brooderyk	0.0				_

OPEN DAY 27 October 2006 Attendance

Organisation	Name	Contact No	Fax No	Signature
Buhle Bemvelo Environmental Group	Mr M Ngobeni	072 383 6871	013 656 3264	0
Canon Eng	Mr E Smit	0824503534	0136597112	Vert Co
	Mr. K du Plessis		0136597112	(F)
Clewer Primary School	Mr S Zwane	013 659 7537	013 659 7124	0
Eco Securities	Mr H Sa	6 - C		
Eskom Customer Service	Mr D Madike Ravas Nades Alleta Nkuna	013 693 3423 082 788 1498	013 693 3719	alach of
Emahahleni Municipal Council	Mr J Makena Mrs A Simelane	013 690 6428	013 690 6459 013 696 2350	R Q
Environmental Justice Networking Forum	Mr I Mamapane	072 741 2682	013 656 2894	or max or
J & I Recycling	Mr A. Maseko	082 445 0019		HaseR
Witbank News	Ms M Boshoff	013 656 2490	Chanel Pringle	0
COMPARETI COUNCIL	MS P.N. NDLOVU	08263+7551	lynet deale	A.
TRAMSALLOYS	P.J. FOURIE	082 7315916	and allow	Burg
Highveld.	Ente Muller	0833002183		HAN

13

UNFECE

Above: Henk Sa (EcoSecurities) presenting Climate Change

page 68

UNFCCC

Annex 6

CONFIRMATION OF NO CAP ON ELECTRICITY USE

-----Original Message-----From: Daniel Madike [mailto:Daniel.Madike@eskom.co.za] Sent: 26 January 2007 08:45 AM To: ALL Lou Jacobs Cc: ALL Steve Van Niekerk Subject: Re: National Power Supplier - No Limitation since 2003

NB: This email and its contents are subject to the Eskom Holdings Limited EMAIL LEGAL NOTICE which can be viewed at <u>http://www.eskom.co.za/email_legalnotice</u>

Eskom does not put any ristriction on the energy usage by customers. There was no restrictions on the purchase of energy by Transalloys from Eskom. Transalloys is allowed to use all the energy available from the Eskom installation & as per the agreement

Regards,

Daniel Madike Key Sales and Customer Service Key Customer Executive Tel: (013) 693-3423 Fax: (013) 6933719 Cell: 082 788 1498

>>> "ALL Lou Jacobs" <Lou@hiveld.co.za> 26/01/2007 07:54:25 >>> Hi, Daniel

As discussed telephonically, could you please confirm by return e-mail that **from 2003 onwards, there has been no "cap" on the purchase / use of electricity by Transalloys.** I think the purpose is to prove that we (Transalloys) did not initiate the project to improve efficiency on Furnaces as a result of a restriction placed (By Eskom) on the amount of electricity that can be procured from the National Grid.

Regards,

Lou Jacobs

page 69

UNFCCC

HIGHVELD STEEL AND VANADIUM CORPORATION LIMITED Registration No. 1960/001900/06

DIRECTORS: G G Gomwe (Chairman) (Zimbabwean), A J de Nysschen (Chief Executive Officer), D D Barber, E Barnardo,

I Botha, L Boyd, C B Brayshaw, J W Campbell, C J Colebank, A V Frolov (Russian), A Harris, L Matteucci, N B Mbazima

(Zambian), Ms D R Motsepe, Dr A J Pienaar, B J T Shongwe, A Sorokin (Russian).

ALTERNATE DIRECTOR: GF Young

COMPANY SECRETARY: A Diener

NOTE: This e-mail and the contents thereof are subject to the terms and conditions of the Highveld Steel and Vanadium Corporation Ltd e-mail disclaimer, copy of which can be found at: http://www.highveldsteel.co.za/edisclaimer.htm

If you are unable to access the above URL, but you require a copy of the disclaimer, kindly send

an e-mail to utility@hiveld.co.za with the word 'edisclaimer' in the subject line.

page 70

UNFCCC

Annex 7

UNCERTAINTY ANALYSIS

Project participants have used the EC monitoring guidelines to take into account the uncertainty in the calculation of onsite emissions. The way EU ETS deal with uncertainty and how it is applied to the project is the following:

- 1. Look at the monitoring tier imposed to the project given its size and its sector. This tier gives guidelines on the method of measurement or estimation, and the maximum permissible uncertainty for measured parameters.
 - > In the iron and steel sector, the tiers imposed to a plant are the following (table 1 p13, method 'Fuel as process input'):

	Act	Activity Data			Net Calorific Value			Emission Factor		
Size of the plant	Α	В	С	Α	В	С	Α	В	С	
Tier	2	2	3	2	2	3	1	2	2	

Column B: 50 ktonnes<total annual emissions<=500 ktonnes

Column C: total annual emissions>500 ktonnes

If the project plant was covered by the EU ETS, it would fall under column C and the following tiers would therefore apply (annex II - "CO2 emissions from combustion installations and processes"):

• <u>Activity data</u> (t reductant)

Tier 3a: "Fuel consumption is metered without intermediate storage before combustion in the installation applying metering devices resulting in a maximum permissible uncertainty of less than ± 2.5 % for the metering process."

or Tier 3b: "Fuel purchase metered applying metering devices resulting in a maximum permissible uncertainty of less than $\pm 2.0\%$ for the metering process."

- <u>Net calorific value</u> (GJ/t reductant): Tier 3: "The net calorific value representative for each batch of fuel in an installation is measured by the operator, a contracted laboratory or the fuel supplier in accordance with the provisions of section 10 of Annex
- <u>Emission factor (tC/GJ)</u>:

Tier 2a: "The operator applies country specific emission factors for the respective fuel as reported by the respective Member State in its latest national inventory submitted to the Secretariat of the United Nations Framework Convention on Climate Change."

or Tier 2b: "The operator derives emission factors for each batch of fuel based on one of the following established proxies:

density measurement of specific oils or gases common e.g. to the refinery or steel industry, and
 net calorific value for specific coals types,

in combination with an empirical correlation as determined by an external laboratory

according to the provisions of section 10 of Annex I. The operator shall ensure that the correlation satisfies the requirements of good engineering practice and that it is applied only to values of the proxy which fall into the range for which it was established."

2. Use the method prescribed by the monitoring tier to monitor emissions (e.g. IPCC values; default national value; project-specific value measured with such or such instrument)

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1
CDM – Executive Board

page 71

UNFCCC

- Activity data:
 - Tier 3a is used for coal and coke consumption (these consumptions are metered in the load cells, and there is no intermediate storage thereafter before it reaches the furnace).
 - Tier 3b is used for paste consumption (paste purchases are metered on a weighbridge)
- ➢ <u>Net calorific value</u> (GJ/t reductant) and emission factor (tC/GJ) :

In the project, these two parameters are combined in an overall carbon content per ton of reductant (tC/t reductant). Project participants have made all efforts possible to retrieve data enabling the use of the highest tier possible (NCV tier 3, EF tier 2b), which was possible for:

- the coke, for which seven years of volatile and fix carbon contents have been compiled to calculate the coke emission factor (monthly running average are used, as data per batch is not available);
- the paste, for which reliable information is available from the supplier

However, project specific carbon content for the coal could not be calculated because there is no accurate records of the proportions of various types of coal that were used in the baseline (these proportions are needed to calculate the weighed average coal carbon content). Therefore, tier 2b has been used; as there is national factor communicated by South Africa to the UNFCCC²⁰, IPCC 2006 emission factor for coal consumed as a reductant has been used.

and :

For estimated values:

3. Take the estimated value from the relevant reference (no uncertainty should be assigned to that value)

- > The only estimated parameters are:
 - **Coal emission factor**: 3.1tCO2/t coal (from IPCC 2006)
 - **Paste emission factor**: 3.32 tCO2/t paste (from manufacturer)

Note that although no uncertainty should be assigned to estimated values in the EU ETS, the IPCC uncertainty range has been used here to stay inline with AM0038's requirements. This is extremely conservative and contrary to the EU ETS approach.

For measured values:

3. Measure the parameter according to the prescribed method

- > For all parameters except coal emission factor: see point 2 above for the method, and tables in section B.6.2 for the results in the baseline.
- 4. Calculate the uncertainty of the measurement.
 - > The uncertainties have been calculated and are indicated in table 11.
- 5. Make sure that the uncertainty is below the maximum permissible uncertainty under the tier imposed. If it is not: improve the monitoring system until the uncertainty of the measurement falls below the maximum permissible uncertainty

²⁰ South Africa (2000) *Initial national communication under the United Nations Framework Convention on Climate Change*, section 2.4.2 p26: "Emission factors determined by the industry for the South African situation were used for calculating the emissions from the production of aluminium and ammonia. For all other process emissions, IPCC default values were used."

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1

CDM – Executive Board

UNFCCC

- > The uncertainties of each parameter have been calculated and are indicated in table 11.
 - To make sure the uncertainty of **coal and coke consumptions** stay below the 2.5% permissible uncertainty, load cells (which have a rated uncertainty of 2%) will be calibrated in line with manufacturer's specifications and measurements will be made using appropriate QA and QC procedures and integrated into the plant's ISO 14001 management system.
 - For **paste consumption**, average weights of paste cylinders were initially made per day but have been changed to monthly to ensure that the overall uncertainty of monthly paste consumption stays below 2.5% (however, the daily consumption may be above +/- 2.5% because the weight of one individual cylinder may differ by more than 2.5% from the average monthly weight).
 - The uncertainty of **coke emission factor** is slightly higher than that of other parameters due to the fact that this is done through sampling and a calculation of a monthly running average.

In conclusion, eforts have been made to follow the tiers imposed by the EC, successfully for all parameters, with the following exceptions:

- the determination of the coal emission factor, which couldn't be determined on a project-specific basis; and
- the determination of the coke emission factor, which is determined on a project specific basis but might not follow all the provisions of section 10 of Annex I of the EC monitoring guidelines.

It is important to note that retroactively applying a monitoring tier to a baseline factor which is based on historical data (as required in the CDM) is much more delicate that imposing a monitoring tier to a project factor that will be measured (as in the EU ETS).

As a result of this comprehensive analysis and rigorous monitoring plan, project participants estimate that they have assessed uncertainty "in line with the European Commission guidelines on monitoring and reporting of GHG emissions in iron and steel production and taken into account when calculating the onsite emissions".

Executive Board

page 73

UNFOCO

Cells in white are calculated values

Annex 8

page 74

UNFCCC

Annex 9

LIST OF PDD ATTACHMENTS

The following documents are attached to the PDD:

A. Consideration of CDM

Page 20: [1] Deleted

Arnaud Viel

Illustration based on financial results

To illustrate points 3 to 6 above and put some figures on the qualitative arguments advanced, below are the financial results to date (as of December 2006) from the retrofitting of furnaces 7 and 5:

Table 7: Financial results of the first two retrofittings covered by the project activity, as of December 2006.

All figures in Pands	Without ca	rbon credits	With carbon credits		
All figures in Rands	Expected	Actual	Expected	Actual	
		NACE 7			
	(Cost	29,000		
TOTAL Investment cost	Dovonuos to da	te (Oct04-Dec06	38,000		
Increased furnace availability	4,530,486	-6,415,075			
Savings on MWh	6,433,134	-1,415,088			
Savings on short term repairs	10,157,400	5,240,858			
TOTAL revenues to date	21,121,020	-2,589,305	25,190,507	1,480,183	
1	Financial analy	sis (over 10 year	s)		
NPV	34,374,905	-21,492,068	43,963,553	-11,903,420	
IRR	54.0%	#DIV/0!	64.7%	-12.2%	
		NACE 5			
TOTAL Investment cost	<u> </u>	<i>Cost</i> 45.00	00,000		
TOTAL Investment cost	Rovonuos to da	45,00 te (Nov05-Dec00			
Increased furnace availability	17,420,666	-8,058,870			
Savings on MWh	3,381,602	-2,328,290			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, ,				
Savings on short term repairs	9,583,079	10,220,278			
		10,220,278	32,408,170	1,855,940	
Savings on short term repairs TOTAL revenues to date	9,583,079 30,385,347		, ,	1,855,940	
Savings on short term repairs TOTAL revenues to date	9,583,079 30,385,347	-166,883	, ,	1,855,940 -2,853,359 7.6%	

Note: This table includes only investment cost. However, a finer analysis would also include the opportunity cost from lost production during the months of retrofitting – such a cost would add significantly to the investment cost. Source: Highveld, Payback evaluation schedule

The financial analysis presented in table 7 is based on the Payback evaluation schedule made by Transalloys for both projects as of December 2006^{1} . It shows that:

¹ Included in annex 8.

- On the one hand, NPVs and IRRs based on 'expected' results are extremely high because these calculations were based on excessively optimistic forecasts for the project.
- On the other hand, NPVs and IRRs based on actual results are negative², because of the technical difficulties that the project has faced, which make it financially very risky. Payback is far from being reached after 1 to 2 years of actual operation because of project underperformance.

This underperformance is due to both technical elements (see point 5 and 6 above) and market conditions (see points 3 and 4 above). On the technical side, some problems are independent of the project (change in raw material supplies, planned shutdown which had to be reversed, etc) but a lot of them are directly linked to the installation of the newly design furnaces (see the design problems described in point 5. above).

Page 73: [2] Deleted

Arnaud Viel

6/22/2007 7:56:00 AM

²Note that negative financial results on electricity savings are based on low figures for the baseline consumption of electricity (as set by Transalloys in their Payback evaluation schedule). Compared to the baseline electricity consumption as calculated per AM0038, electricity savings are actually positive and a 0.4MWh/tSiMn savings (lower than the 0.5-1MWh/tSiMn initially expected) is assumed for emission reduction forecasts (see section B.7).

Financial assumptions						
CER price	10	€/ICO2e				
Exchange rate	9.4	R/E				
Discount rate	12.0%					

Revenues from oarbon credits							
Furnace 7		Rands per annum					
Pumace /	4,059,488	Rands to date (Oct04-Dec06					
Furnace 5	1,733,848	Rands per annum					
Pumace 5	2,022,823	Rands to date (Nov05-Dec0					

Total revenues of the projects to date (as of December 2006) (Rands)	Cumulate	ace 7 ed savings - Dec06)	Furnace 5 Cumulative savings (Nov05-Dec05)		
December 2000) (Hanus)	Expected	Actual	Expected	Aotual	
inoreased furnace availability	4,530,486	-6,415,075	17,420,666	-8,058,870	
Savings on MWh	6,433,134	-1,415,088	3,381,602	-2,328,290	
Savings on short term repairs	10,157,400	5,240,858	9,583,079	10,220,278	
TOTAL	21,121,020	-2,589,305	30,385,347	-165,883	
Source: Payhack Eval Sche	dule Dec 2006				

Monthly revenues of the	Furr	ace 7	Furnace 6		
projects (Rands)	Expected	Actual (avg 27mths)	Expected	Aotual (avg 14mths)	
inoreased furnace availability	167,795	-237,595	1,244,333		
Savings on MWh	238,264	-52,411	241,543	-101,796	
Savings on short term repairs	376,200	194,105	684,506	730,020	
TOTAL	782,260	-95,900	2,170,382	52,590	

Source: Payback Eval Sche	dule Dec 2008	

all down to Day do	Without ca	rbon credit:	With carbon credits					
All figures in Rands	Expected	Actual	Expected Actual					
	FUR	NACE 7						
		aut						
TOTAL Investment cost								
	Revenues to da	te (Oct04-Dec06	9					
Increased furnace availability	4,530,486	-6,415,075						
Savings on MWh	6,433,134	-1,415,088	I					
Savings on short term repairs	10,157,400	5,240,858						
TOTAL revenues to date	21,121,020	-2,589,305	25,190,507	1,480,183				
	inancial analy	nis (over 10 year	e)					
NPV	34,374,905	-21,492,068	43,963,553	-11,903,420				
IRR	54.0%	#DEV/0	64.7%	12.2%				
		ACE 5						
		ant and a second s						
TOTAL Investment cost			0.000					
TO THE REPORT OF THE PARTY OF	Revenues to dei	e (Nav05-Dec06	0					
Increased furnace availability	17,420,666	-8,058,870						
Savings on MWh	3,381,602	-2,328,290	t					
Savings on short term repairs	9,583,079	10,220,278						
TOTAL revenues to date	30,385,347	-166,883	32,408,170	1,855,940				
	inancial analy	nis (over 10 year						
NPV	97,897,232	-12,045,385	107,089,258	-2,853,359				
IRR	57.5%	-12.7%	61.4%	7.6%				

				_
Furnace	Size	investment cost (mn Rand)	Number of months of operation	
7	48MVA	17	27	Oct04-Dec06
5	48MVA	45	14	Nov05-Dec06

--Page Break----

Year			-4	0	1	2	3	4	6	6		
			Cash flow	-17,238,000	9,387,120	9,387,120	9,387,120	9,387,120	9,387,120	9,387,120	9,387,120	9,
	Without carbon	Expected	NPV	34,374,905								<u> </u>
			IRR	54.0%	1							
		Actual	Cash flow	-17,238,000	-1,150,802	-1,150,802	-1,150,802	-1,150,802	-1,150,802	-1,150,802	-1,150,802	-1
			NPV	-21,492,068								· · ·
			IRR	#DIV/0								
Furnace 7			Cash flow	-17,238,000	11,195,781	11,195,781	11,195,781	11,195,781	11,195,781	11,195,781	11,195,781	11
	With carbon	Expected	NPV	43,963,553								
			IRR	65%]							
		Actual	Cash flow	-17,238,000	657,859	657,859	657,859	657,859	657,859	657,859	657,859	
			NPV	-11,903,420								
			IRR	-12.2%]							
		Expected	Cash flow	-45,000,000	26,044,583	26,044,583	26,044,583	26,044,583	26,044,583	26,044,583	26,044,583	26
				97,897,232								
	Without		IRR	57%]							
	carbon		Cash flow	-17,238,000	631,081	631,081	631,081	631,081	631,081	631,081	631,081	
Furnace 6		Actual	NPV	-12,045,385								
			IRR	-12.7%								
			Cash flow		27,778,432	27,778,432	27,778,432	27,778,432	27,778,432	27,778,432	27,778,432	-1. 111, 26, 27,
		Expected		107,089,258								
			IRR	61%								_
	With carbon		Cash flow	-17,238,000	2,364,929	2,364,929	2,364,929	2,364,929	2,364,929	2,364,929	2,364,929	64,929 2,
		Actual	NPV	-2,853,359							-	
			IRR	7.6%								