

CDM – Executive Board

UNECO

SECTION D. Application of a monitoring methodology and plan

D.1. Name and reference of <u>approved monitoring methodology</u> applied to the <u>project activity</u>:

Approved consolidated monitoring methodology ACM 0005 "Consolidated Monitoring Methodology for increasing the Blend in Cement Production."

D.2. Justification of the choice of the methodology and why it is applicable to the <u>project</u> <u>activity</u>:

This methodology is applicable to project because:

- A. Project aims at producing blended cement by increasing the share of additives (i.e. reduce the share of clinker) beyond current practices in the country. The additives include fly ash, trass and limestone, etc.
- B. There is no shortage of additive related to the lack of blending materials. Reserves of additive materials are abundant:
 - a. Most of limestone quarry in Indonesia has reserve of 50 to 200 years for normal OPC cement production. Most cement plants are located close to these limestone quarries. When limestone is used as additive material in blended cement, the limestone consumption for producing raw meal is reduced. Thus, producing blended cement to replace OPC cement will result in net reduction of limestone consumption which would increase the lifetime of the limestone reserves.
 - b. Trass is available in abundance due to the geological properties in Indonesia where volcanic areas cover the larger part of Sumatra and Java. Separate studies on trass have been carried out by Indocement and are available for validation purpose.
 - c. Fly-Ash and Trass have similar properties and are interchangeable when used as cement additives. Thus, in the shortage of fly-ash, trass would be used instead of fly-ash. The availability of fly-ash quantity will not be the issue for lack of blending materials.
- C. This methodology is applicable to domestically sold output of the project
- D. Adequate data are available on cement types in the market (From Indonesian Cement Association ASI)

page 20

UNFCCC

		D.2. 1	. Option 1	l: Monitoring of	f the emission	s in the pr	oject scena	rio and the	e <u>baseline s</u> o	<u>cenario</u> (revised aco	cording to accepted r	equest of
		deviation, De	cember 20	07)								
D.2.	1.1. Data	a to be collected in	order to m	onitor emission	s from the pro	ject activi	ity, and how	v this data	will be arc	hived:		
ID num ber	Data Type	Data Variable	Source of data	Symbol	Data Unit	Measured (m), calcu lated (c) or estima ted (e)	Recording Frequency	Proportion of Data to be Monitored	How Will the Data be Archived (electronic/p aper)	For How Long is the Archived Data Kept?	Comment	instrument used to record
1	Fraction	CaO content of the raw material for raw meal already calcined	Plant records	In CaOy	%	m,c	daily	100%	Electronic	2 years after the end of the crediting period		X-Ray Fluorescence
2	Fraction	CaO content of the clinker	Plant records	OutCaOy	%	m,c	daily	100%	Electronic	2 years after the end of the crediting period		X-Ray Fluorescence
3	Fraction	MgO content of the raw material for raw meal already calcined	Plant records	InMgOy	%	m,c	daily	100%	Electronic	2 years after the end of the crediting period		X-Ray Fluorescence
4	Fraction	MgO content of the clinker	Plant records	Out MgO	%	m,c	daily	100%	Electronic	2 years after the end of the crediting period		X-Ray Fluorescence
5	Mass	Clinker production	Plant records	CLNKy	Kilo tonnes of clinker	m	annually	100%	Electronic	2 years after the crediting period	As per weigh feeder codes in ITP online system	P1: 01-W-2-01 P2: 02-W-2-01 P3: 03-W-2-01 03-W-2-02 P4: 04-W-2-01 04-W-2-02 P5: 05-W-2-01 P6: 06-W-2-01 P6: 06-W-2-02 P7: 07-W-2-01 P8: 08-W-2-01 P9: 09-W-2-01 P10: 10-W-2-01 P11: 11-W-2-01 11-W-2-02 P12: 12-W-2-01 12-W-2-02
6	Quantity	Fossil fuel consumed	Plant records	FFi_y	Tonnes of fuel i	m	annually	100%	Electronic	2 years after the end of the crediting period	As per weigh feeder codes in ITP online system	Automatic Weighing feeders and weight scale: P.3:03-V-0-01, 03-S-0- 01 P.4:04-V-0-01 P.9:09-I-0-01, 09-K-0- 01

UNFCCC

page 21

7	Emissio n factor	Emission factor for fossil fuel	IPCC/pla nt	EFFi	TCO2/tonne of fuel i	c	annually	100%	Electronic	2 years after the end of the crediting period	Default as per IPCC standard	P.10:10-I-0-01, 10-K-0- 01 P.11:11-V-0-01 P.12:12-V-0-01
8	Quantity	Grid electricity for clinker	records Plant	PELEgridCLNK.v	MWh	m,c	annually	100%	Electronic	2 years after the end of the	Measured &	See attachment (Kwh
		production	records	0						crediting period	calculated as per normal operation	Meter For Clinker.XLS)
8.a	Quantity	Electricity for clinker production	Plant records	PELE_CLNK,y	Mwh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Calculated from electricity consumption from raw mill and from kiln,limestone raw meal, clay, laterite and coal	
8.a.1	Quantity	electricity consumption for raw mill	Plant records	PELE_raw mill, y	Mwh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Calculated from each kWh meter measured and installed to measure the raw mill electricity consumption. Below is the measurement point code for each plant, P1 to P12 , except P5 since this plant is excluded in the project	Citereup: P1: KWH METER R.M P-1 LIMESTONE W.F P-1 SANDY CLAY P-1 SAND P-1 PYRITE CINDER P-1 P2: KWHMETER RAWMILL P2 LIMESTONE WF P2 SANDY CLAY P2 SANDY CLAY P2 SANDY CLAY P2 SAND P2 PYRITE CINDER P2 P3: FEEDER DRUM DRYER P3 LIMESTONE P3 SAND P3 P4: FEEDER RAW MILL P4 TR1+2- (BB5+BC12+BD7) P6: RAW MILL IMPACT HAMMER MILL

page 22

UNFCCC

												P7 : RAW MILL
												P8 : RAW MILL LIMESTONE WF P8 SANDCLAY WF P8 SAND WF P8
												P11 : LSS1 LSS2 LM BLND TR LSS3 M.GRIND RM STRG LSS3 M.GRIND-RM STRG
												Cirebon: P9 : RAW MILL GRINDING RAW MILL MOTOR
												P10 : RAW MTRL.TRANS.&GRIN RAW MILL FAN LIMESTONE WF CLAY WF. SAND WF.
												Tarjun: P12 : RAW MILL L'STONE RM#1 W.F. MIX MATL RM#1 W.F. S'STONE RM#1 W.F. IRON ORE RM#1 W.F.
8.a.2	Quantity	electricity consumption for clinker burning in the kiln	Plant records	PELE_kiln, y	MWh	M,c	monthly	100%	Electronic	2 years after the end of the crediting period	Calculated from each kWh meter measured and installed to measure the kiln electricity consumption.Next column (right) is the measurement point code for each plant, P1 to P12, except P5 since this plant is excluded in the project	Citeuruep : P1 : KWH METER BURNING P1 KWH METER KILN P1 KWH MTR EP COLER P1 R.COAL KL#1 RAW MEAL W.F P-1
												P2 : KWH METER

page 23

						BURNING P2 KWH METER KILN P2 KWH MTR EP COOLER P2 RAW MEAL W.F P2
						P3 : FEEDER BURNING CARBON FLY ASH SLUDGE PAPER WASTE FUEL PALM SHELL
						P4 : FEEDER BURNING P4
						P6 : HEAT EXCHANGER I&II KILN & COOLER
						P7 : K I L N
						P8 : K I L N
						P11 : LSS4 KILN FEED &KILN LSS5 CLINKERIZATION
						Cirebon : P9 : KILN AND AQC HOMO AND SP
						P10 : HOMOGNZING&KILN FEED KILN,AOC&CLINKR.TR NS BOTTOM ASH FEEDER COAL MILL
						Tarjun: P12: KILN KWH- METER WASTE OIL PALM SHELL

UNFCCC

page 24

8.a.3	Quantity	electricity consumption for	Mining	PELE total LS, v	MWh	mc	Monthly	100%	Electronic	2 years after the end of the	Citeuruep :
	, i	limestone production	records	= =,			,	10070	Licenonic	crediting period	
	. !	inficatione production	iccorus							crediting period	
	. !										P-3 CRUSHER-2
	. !										DP-101
	. !										
	. !										P-3 CRUSHING
	. !										SYSTEM
											DACDS 2/ PA AA
											P-4 CR3-2 / DA-4A
											P4 SYSD8
	. !										P-5 SVSTEM
	. !										
											P-6A CRS-1/BA-4
	. !										P-6A CRS-2/BA-4A
	. !										
											F-0D CK3-1/DA-3
											P-6B CRS-2/BA-5A
											P-6 SYS -D9
											D 7 CDC/D1M 10/
											P-7 CR5/B1WL106
											P-8 CRS/B1M.206
											SVSTEM D10
											KWH CRS.P9
											KWH CRS.P10
											PROK CONVEYOR
											DP2-6
											DD100
	. !										DP102
											CONBLOCK
											$(OUARRY_A)$
	. !										
											MINING CONVEYOR
											Cirobon :
	. !										Cirebon.
											LTP
											750 KVA
											IVIVID 103
											MWB 109
											IS CRUSHING TR
											FEEDE
											LS CRUSHER NO1
											POTOR
											KUTUK
											LS CRUSHER NO2
											ROTOR
	ļ	1									
	. !	1									1
	. !	1									Tarjun :
	. !	1									Feeder 2P1-1S1-U#1
	. !	1									
	. !	1									(Incoming TT KV) in
	. !	1									LSS-3
	. !	1									Eador 3D2 1S1 11#4
	. !	1									
	. !	1									(331-BC2-M#1 250 kW)
	ļ	1									in LSS-3
	. !	1									Ecodor 2D2 161 U#D
		1	1	1	1	1			1		FEEDELSPZ-IST-U#B

UNFCCC

page 25

CDM – Executive Board

											(Trafo 3P2-1T1) in LSS- 3 Feeder 3P2-1V1/1M1 (Aux Trafo 3P2-1T1) in MCC LSS-3
8.a.4	Quantity	electricity consumption for clay production	Mining records	PELE_clay, y	MWh	m,c	Monthly	100%	Electronic	2 years after the end of the crediting period	MCC LSS-3 Citeuruep : PHB-1 PHB-2 PHB-3 PHB-4 PHB-5 PHB-6 PHB-7 PHB-8 PHB-9 PCL01 PCL02 PCL03 PCL04 PCL05 PCA01 PCA02 PCA03 PHB-12 HAMBALANG Cirebon : 500 KVA MWB 202 ADD CRUSHER TR FEEDE ADDITIVE CRUSHER Tarjun : Feeder 2P1-1S1-U#1 (Incoming 11 kV) in LSS-3 Feeder 3P2-1S1-U#A (331-BC2-M#1 250 kW) in LSS-3 Feeder 3P2-1S1-U#B
											(Irato 3P2-1T1) in LSS- 3 Feeder 3P2-1V1/1M1 (Aux Trafo 3P2-1T1) in MCC LSS-3

UNFCCC

page 26

8.a.5	Quantity	electricity consumption for laterite production	Mining records	PELE_laterite, y	MWh	m,c	Monthly	100%	Electronic	2 years after the end of the crediting period		Tarjun : Feeder 2P1-1S1-U#1 (Incoming 11 kV) in LSS-3 Feeder 3P2-1S1-U#A (331-BC2-M#1 250 kW) in LSS-3 Feeder 3P2-1S1-U#B (Trafo 3P2-1T1) in LSS-3 Feeder 3P2-1V1/1M1 (Aux Trafo 3P2-1T1) in MCC LSS-3
8.a.6	Quantity	electricity consumption for coal production	Plant records	PELE_coal, y	MWh	m,c	Monthly	100%	Electronic	2 years after the end of the crediting period		Citeureup : Coal Mill P.1/4 - COAL DRYER 1-4 - P4 COAL MILL Coal Mill P.6/8 - COAL DRYER 6-8 - AUX COAL MILL 6-8 - KWH COAL DRYER - P6 COAL MILL - P7 COAL MILL - P8 COAL MILL Coal Mill P.11 - P11 COAL MILL Coal Mill P.9 - COALMILL Coal Mill P.9 - COALMILL Coal Mill P.10 - P10 COAL PWR Tarjun : - PLANT 12
9	Emissio n factor	Grid Emission factor	See comment	EF _{grid_y_}	T CO2/MWh	с	annually	100%	Electronic	2 years after the end of the crediting period	ACM0002 is used to determined electricity emissions: Based on JAVA-BALI grid emission factor. Source: Decision on the meeting on determination of CDM emission factor of JAVA- MADURA-BALI (JAMALI) Grid submitted by Chevron and agreed by the committee, Directorate	

page 27

					General of Electricity and	
					Energy Utilization, Jakarta,	
					Indonesia, Friday, 11	
					March 2006). This is	
					estimated based on ACM	
					0002. Reference for cross	
					checking: Directorate	
					general electricity and	
					energy utilization,	
					Renewable energy	
					division, 2006.	

UNFCCC

page 28

10	Quantity	Self generation of electricity for clinker production	Plant records	PELE _{sg_CLNK,y}	MWh	m	monthly	100%	Electronic	2 years after the end of the crediting period		See attachment (Kwh Meter For Clinker.XLS)
11	Emissio n factor	Electricity self generation emission factor	Plant records /IPCC	EFsg_y	T CO ₂ /MWh	С	monthly	100%	Electronic	2 years after the end of the crediting period		
12	Quantity	Blended cement (BC) production in year y which is sold domestically (data is verifiable)	Plant records	ВСу	Ton	m	monthly	100%	Electronic	2 years after the end of the crediting period		
13	Quantity	Grid electricity for grinding BC	Plant records	PELE _{grid_BC,y}	MWh	m	monthly	100%	Electronic	2 years after the end of the crediting period		See attachment (Kwh Meter For BC.XLS)
13.a	Quantity	Electricity for grinding BC	Plant records	PELE_BC., y	Mwh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Calculated from each kWh meter measured and installed to measure the electricity consumption for grinding blended cement .Next column (right) is the measurement point code for each plant, P1 to P12, except P5 since this plant is excluded in the project:	Citeureup : P1 : KWH METER FM P1 P2 : KWH METER FM P2 CLINKER WF P2 P3 : FINISH MILL 3-A FINISH MILL 3-A FINISH MILL 3-B P4 : CEMENT MILL 4A-1 CEMENT MILL 4A-1 CEMENT MILL 4A-2 CAF. 4A DISTRIB. CE FMP4A CEMENT MILL 4B-2 CAF. 4B DISTRIB.CE FM P4B P6 : CEMENT MILL-1 CEMENT MILL-1 CEMENT MILL-1 P7 : CEMENT MILL P8 : CEMENT MILL 8A INDOSIN 8B ROLLER PRESS 8B

UNFCCC

14	Quantity	Self generation of	Plant	PELE	MWh	m	annually	100%	Electronic	2 years after the end of the		P11 : LSS6A FINISH- CMT.STR LSS6B F.GRIND-CMT ST Cirebon : P9 : NO.1 CEMENT NO.2 CEMENT NO.2 CEMENT P10 : CEMENT GRINDING CM.MILL MOTOR Tarjun : P12 : FINISH MILL 1 CEMENT MILL 2 See attachment (Kwh
	Quantity	electricity for grinding BC	records	FELE _{sg_BC,y}		111	annuany	10070	Electionic	crediting period		Meter For BC.XLS)
15	Quantity	Grid electricity for grinding additives	Plant records	PELE _{grid_ADD}	MWh	m	annually	100%	Electronic	2 years after the end of the crediting period		
15 a	Quantity	Overall electricity for limestone	Plant records	PELE_total ADD, y	Mwh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Calculated from each kWh meter measured and installed to measure the electricity consumption for grindinglimestone . Next column (right) is the measurement point code for each plant, P1 to P12 , except P5 since this plant is excluded in the project	Citeureup : P-4 CRS-1 / BA-4 P-3 CRUSHER-2 DP-101 P-3 CRUSHING SYSTEM P-4 CRS-2 / BA-4A P4 SYSD8 P-5 SYSTEM P-6A CRS-1/BA-4 P-6A CRS-2/BA-4A P-6B CRS-2/BA-4A P-6B CRS-2/BA-5A P-6B CRS-2/BA-5A P-6 SYSD9 P-7 CRS/B1M.106 P-8 CRS/B1M.206 SYSTEM-D10 KWH CRS.P9 KWH CRS.P10

UNFCCC

												UNIT 3 PROK CONVEYOR DP2-6 DP102 CONBLOCK (QUARRY-A) MINING CONVEYOR Cirebon : L T P 750 KVA MWB 103 MWB 103 MWB 109 LS CRUSHING TR
												FEEDE LS CRUSHER NO1 ROTOR LS CRUSHER NO2 ROTOR
												Tarjun : Feeder 2P1-1S1-U#1 (Incoming 11 kV) in LSS-3 Feeder 3P2-1S1-U#A (331-BC2-M#1 250 kW) in LSS-3 Feeder 3P2-1S1-U#B (Trafo 3P2-1T1) in LSS- 3 Feeder 3P2-1V1/1M1 (
												Aux Trafo 3P2-1T1) in MCC LSS-3
16	Quantity	Self generation of electricity for grinding additives	Plant records	PELE _{sg_ADD,y}	MWh	m	annually	100%	Electronic	2 years after the end of the crediting period		
17	Quantity	Fuel consumption	Plant records	Fi,j,y	Tonnes of fuel i	m	annually	100%	Electronic	2 years after the end of the crediting period		
18	Coeffici ent	Carbon content of the fuel used	IPCC/P1 ant records	COEFi,j,y	tCO2/tonne of fuel i	с		100%	Electronic	2 years after the end of the crediting period	IPCC default	
19	Quantity	Electricity generation	Plant records	GENi,y	MWh	с	annually	100%	Electronic	2 years after the end of the crediting period		See attachment (Kwh Self Generation Meter.XLS)
20	Quantity	Emission per ton clinker due to calcinations	Plant	PE _{calcin,y}	t CO ₂ /tonne	с	annually	100%	Electronic	2 years after the end of the crediting period		

			records		clinker							
21	Quantity	Electricity generation from the grid	Plant records	GEN ele grid, y	MWh	m	annualy	100%	Electronic	2 years after the end of the crediting period	This parameter is measured at PLN power sourcing point and delivered to a single 33KV line for distribution	
22	Quantity	Electricity generation from self generation diesel	Plant records	GEN ele sg diesel, y	MWh	m	annualy	100%	Electronic	2 years after the end of the crediting period	This parameter is measured at Diesel power generation supply point and delivered to a single 33KV line for distribution	
23	Quantity	Electricity generation from self generation, natural gas	Plant records	GEN ele sg natural gas, y	MWh	m	annually	100%	Electronic	2 years after the end of the crediting period	This parameter is measured at natural gas power generation supply point and delivered to a single 33KV line for distribution	
24	Quantity	Auxiliary power, project	Plant records	Auxiliary power, y	MWh	m	anually	100%	Electronic	2 years after the end of the crediting period		
25	Quantity	Emission per ton clinker due to combustion of fossil fuels for clinker production	Plant records	PE _{fossil_fuel,y}	t CO2/tonne clinker	с	annually	100%	Electronic	2 years after the end of the crediting period		
26	Quantity	Grid electricity emissions for clinker production	Plant records	$PE_{ele_grid_CLNK,y}$	t CO2/tonne clinker	с	annually	100%	Electronic	2 years after the end of the crediting period		
27	Quantity	Self generated electricity emission for clinker production	Plant records	PE _{ele_sg_CLNK,y}	t CO2/tonne clinker	с	annually	100%	Electronic	2 years after the end of the crediting period		
28	Quantity	Grid electricity emissions for BC grinding	Plant records	PE _{ele_grid_BC,,y}	t CO2/ tonne BC	с	annually	100%	Electronic	2 years after the end of the crediting period		
29	Quantity	Self generated electricity emission for BC grinding	Plant records	PE _{ele_sg_BC,y}	t CO2/ tonne BC	с	annually	100%	Electronic	2 years after the end of the crediting period		
30	Quantity	Grid electricity emissions for additives preparation	Plant records	PE _{ele_grid_ADD,,y}	t CO2/ tonne BC	c	annually	100%	Electronic	2 years after the end of the crediting period		

UNFCCC

31	Quantity	Self generated electricity emission for additives preparation	Plant records	PE _{ele_sg_ADD,y}	t CO2/tonne BC	с	annually	100%	Electronic	2 years after the end of the crediting period		
32	Quantity	Share of clinker per ton of BC	Plant records	P _{blend} , y	t of clinker/t of BC	c	annually	100%	Electronic	2 years after the end of the crediting period	Calculated from no.12	

UNECCO

D.2.1.2. Description of formulae used to estimate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Consistent with the approved consolidated methodology ACM 0005, the project emissions take into account the followings:

- (i) Emissions from calcinations of limestone;
- (ii) Emissions from combustion of fossil fuel and electricity for clinker production
- (iii) Emissions from electricity used for additive preparation and grinding of cement

The following formulae is used to estimate the project emissions.

 $PE_{BC,y} = [PE_{clinker,y} * P_{Blend,y}] + PE_{ele_ADD_BC,y}$

Where:

 $PE_{BC,y} = CO_2$ emissions per tonne of BC in the project activity plant in year y(t CO₂/tonne BC)

PEclinker,y = CO₂ emissions per tonne of clinker in the project activity plant in year y (t CO₂/tonne clinker) and defined below

P_{Blend,y} = Share of clinker per tonne of BC in year y (tonne of clinker/tonne of BC)

PE_{ele_AD,D_BC,y} = Electricity emissions for BC grinding and preparation of additives in year y (tCO2/tonne of BC)

CO₂ per tonne of clinker in the project activity plant in year y is calculated as below:

 $PE_{clinker,y} = PE_{calcin,y} + PE_{fossil_fuel,y} + PE_{ele_grid_CLNK,y} + PE_{ele_sg_CLNK,y}$

where:

 $PE_{clinker,y} = Emissions of CO_2 \text{ per tonne of clinker in the project activity plant in year y (t CO_2/tonne clinker)}$ $PE_{calcin,y} = Emissions \text{ per tonne of clinker due to calcinations of calcium carbonate and magnesium carbonate in year y (t CO_2/tonne clinker)}$ $PE_{fossil_fuel,y} = Emissions \text{ per tonne of clinker due to combustion of fossil fuels for clinker production in year y (t CO_2/tonne clinker)}$ $PE_{ele_grid_CLNK,y} = \text{Grid electricity emissions for clinker production per tonne of clinker in year y (t CO_2/tonne clinker)}$ $PE_{ele_grid_CLNK,y} = \text{Emissions from self-generated electricity per tonne of clinker production in year y (t CO_2/tonne clinker)}$

PEcalcin,y = 0.785*(OutCaOy - InCaOy) + 1.092*(OutMgOy - InMgOy) / [CLNKy * 1000]

where:

PE_{calcin,y} = Emissions from the calcinations of limestone (tCO₂/tonne clinker)

UNFCCC

CDM – Executive Board

0.785 = Stoichiometric emission factor for CaO (tCO₂/t CaO) 1.092 = Stoichiometric emission factor for MgO (tCO₂/t MgO) InCaO_y = CaO content (%) of the raw material * raw material quantity (tonnes) (for raw meal already calcined) OutCaO_y = CaO content (%) of the clinker * clinker produced (tonnes) InMgO_y = MgO content (%) of the raw material * raw material quantity (tonnes) (for raw meal already calcined) OutMgO_y = MgO content (%) of the clinker * clinker produced (tonnes)

 $PE_{fossil_fuel, y} = \left[\sum_{i=y} * EFF_{i}\right] / CLNK_{y} * 1000$

where:

 FF_{i_y} = Fossil fuel of type i consumed for clinker production in year y (tonnes of fuel i) EFF_i = Emission factor for fossil fuel i (tCO2/tonne of fuel) CLNK_y = Annual production of clinker in year y (kilotonnes of clinker)

PEele_grid_CLNK,y = [PELEgrid_CLNK,y * EFgrid_y] / [CLNKy* 1000]

Where:

PELE_{grid_CLNK,y} = Grid electricity for clinker production in year y (MWh) EF_{grid_y} = Grid emission factor in year y(t CO₂/MWh) CLNK_y = Annual production of clinker in year y (kilotonnes of clinker)

 $PE_{ele_ADD_BC,y} = PE_{ele_grid_BC,y} + PE_{ele_sg_BC,y} + PE_{ele_grid_ADD,y} + PE_{ele_sg_ADD,y}$

Where:

 $\begin{array}{l} PE_{ele_grid_BC} = Grid \ electricity \ emissions \ for \ BC \ grinding \ in \ year \ y \ (tCO2/tonne \ of \ BC) \\ PE_{ele_grid_ADD} = Grid \ electricity \ emissions \ for \ additive \ preparation \ in \ year \ y \ (tCO2/tonne \ of \ BC) \\ PE_{ele_grid_ADD} = Grid \ electricity \ emissions \ for \ additive \ preparation \ in \ year \ y \ (tCO2/tonne \ of \ BC) \\ PE_{ele_grid_ADD} = Emissions \ from \ self \ generated \ electricity \ additive \ preparation \ in \ year \ y \ (tCO2/tonne \ of \ BC) \\ PE_{ele_grid_ADD} = Emissions \ from \ self \ generated \ electricity \ additive \ preparation \ in \ year \ y \ (tCO2/tonne \ of \ BC) \\ PE_{ele_grid_ADD} = Emissions \ from \ self \ generated \ electricity \ additive \ preparation \ in \ year \ y \ (tCO2/tonne \ of \ BC) \\ PE_{ele_grid_ADD} = Emissions \ from \ self \ generated \ electricity \ additive \ preparation \ in \ year \ y \ (tCO2/tonne \ of \ BC) \\ PE_{ele_grid_ADD} = Emissions \ from \ self \ generated \ electricity \ additive \ preparation \ in \ year \ y \ (tCO2/tonne \ of \ BC) \\ PE_{ele_grid_ADD} = Emissions \ from \ self \ generated \ electricity \ additive \ preparation \ in \ year \ y \ (tCO2/tonne \ of \ BC) \\ PE_{ele_grid_ADD} = Emissions \ from \ self \ generated \ electricity \ additive \ preparation \ in \ year \ y \ (tCO2/tonne \ of \ BC) \\ PE_{ele_grid_ADD} = Emissions \ from \ self \ generated \ electricity \ additive \ preparation \ in \ year \ y \ (tCO2/tonne \ of \ BC) \ electricity \ additive \ preparation \ in \ year \ y \ (tCO2/tonne \ of \ BC) \ electricity \ additive \ preparation \ year \ y \ (tCO2/tonne \ of \ BC) \ electricity \ additive \ preparation \ year \ year$

 $PE_{ele_grid_BC,y} = [PELE_{grid_BC,y} * EF_{grid_BSL,y}] / [BC_y * 1000]$

Where:

UNFCCC

CDM – Executive Board

 $PELE_{grid_BC,y}$ = Baseline grid electricity for grinding BC (MWh) EF_{grid_y} = Grid emission factor in year y(t CO₂/MWh) BC_y = Annual production of BC in year y (kilotonnes of BC)

 $PE_{elec_sg_BC,y} = [PELE_{sg_BC,y} * EF_{sg_y}] / [BC_y * 1000]$

Where:

PELE_{sg_BC,y} = Self generated electricity for grinding BC in year y (MWh) EF_{sg_y} = Emission factor for self generated electricity in year y (t CO₂/MWh) BC_y = Annual production of BC in year y (kilotonnes of BC)

 $PE_{ele_grid_ADD} = [PELE_{grid_ADD} * EF_{grid_y}] / [ADD_y * 1000]$

Where:

 $\begin{array}{l} PELE_{grid_ADD} = Baseline \ grid \ electricity \ for \ grinding \ additives \ (MWh) \\ EF_{grid_y} = Grid \ emission \ factor \ in \ year \ y(t \ CO_2/MWh) \\ ADD_y = Annual \ consumption \ of \ additives \ in \ year \ y \ (kilotonnes \ of \ additives) \end{array}$

 $PE_{elec_sg_ADD,y} = [PELE_{sg_ADD,y} * EF_{sg_y}] / [ADD_y * 1000]$

Where:

 $PELE_{sg_ADD,y}$ = Baseline self generation electricity for grinding additives (MWh) EF_{sg_y} = Emission factor for self generated electricity in year y (t CO₂/MWh)

ADD_y = Annual consumption of additives in year y (kilotonnes of additives)

D.2.1.3. Relevant data necessary for determining the <u>baseline</u> of anthropogenic emissions by sources of GHGs within the project boundary and how such data will be collected and archived :

ID num ber	Data Type	Data Variable	Source of data	Symbol	Data Unit	Measured (m), calcu lated (c) or estima ted (e)	Recording Frequency	Proportion of Data to be Monitored	How Will the Data be Archived (electronic/p aper)	For How Long is the Archived Data Kept?	Comment	instrument used to record
1	Fraction	CaO content of the raw material for raw meal already calcined	Plant records	InCaO _{BSL}	%	m,c	daily	100%	Electronic	2 years after the end of the crediting period		X-Ray Fluorescence

CDM – Executive Board

2	Fraction	CaO content of the clinker	Plant records	OutCaO _{BSL}	%	m,c	daily	100%	Electronic	2 years after the end of the crediting period		X-Ray Fluorescence
3	Fraction	MgO content of the raw material for raw meal already calcined	Plant records	InMgO _{BSL}	%	m,c	daily	100%	Electronic	2 years after the end of the crediting period		X-Ray Fluorescence
4	Fraction	MgO content of the clinker	Plant records	OutMgO _{BSL}	%	m,c	daily	100%	Electronic	2 years after the end of the crediting period		X-Ray Fluorescence
5	Mass	Clinker production	Plant records	CLNK _{BSL}	Kilo tonnes of clinker	m	monthly	100%	Electronic	2 years after the crediting period	As per weigh feeder codes in ITP online system	P1: 01-W-2-01 P2: 02-W-2-01 P3: 03-W-2-01 03-W-2-02 P4: 04-W-2-01 04-W-2-02 P5: 05-W-2-01 P6: 06-W-2-01 P6: 06-W-2-01 P8: 08-W-2-01 P3: 09-W-2-01 P10: 10-W-2-01 P11: 11-W-2-01 11-W-2-02 P12: 12-W-2-01 12-W-2-02
6	Quantity	Fossil fuel consumed	Plant records	FF _{i_BSL}	Tonnes of fuel i	m	monthly	100%	Electronic	2 years after the end of the crediting period	As per weigh feeder codes in ITP online system	Automatic Weighing feeders and weight scale: P.3:03-V-0-01, 03-S-0-01 P.4:04-V-0-01 P.9:09-I-0-01, 09- K-0-01 P.10:10-I-0-01, 10-K-0-01 P.11:11-V-0-01 P.12:12-V-0-01
7	Emission factor	Emission factor for fossil fuel	IPCC/pl ant rec	EFFi	TCO2/tonne of fuel i	с	monthly	100%	Electronic	2 years after the end of the crediting period	Default as per IPCC standard	
8	Quantity	Grid electricity for clinker production	Plant records	BELE _{grid_CLNK} ,	MWh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Measured & calculated as per normal operation	See attachment (Kwh Meter For Clinker.XLS)
8.a	Quantity	Electricity for clinker production	Plant records	BELE_CLNK,y	Mwh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Calculated from electricity consumption from raw mill and from kiln,limestone raw meal, clay, laterite and coal	

UNFCCC

page 37

8.a.2	Quantity	electricity consumption	Plant	BELE_kiln, y	MWh	M,c	monthly	100%	Electronic	2 years after the end of the	Calculated from each kWh meter	Citeuruep :
		for clinker burning in the	records							crediting period	measured and installed to measure	P1: KWH
		KIIN									the kill electricity consumption.	
											measurement point code for each	
											nlant P1 to P12 excent P5 since	KUIN P1
											this plant is excluded in the project	KWH MTR FP
											····· P······ ··· ···· ··· ··· ··· ···	COLER P1
												R.COAL KL#1
												RAW MEAL W.F
												P-1
												P2:KWH
												KWH METER
												KILN P2
												KWH MTR EP
												COOLER P2
												RAW MEAL W.F
												P2
												CARBON FLY
												ASH
												SLUDGE PAPER
												WASTE FUEL
												PALM SHELL
												P4. FEEDER BURNING P4
												DORNING 14
												P6 : HEAT
												EXCHANGER
												1&11
												KILN & COOLER
												P7·KII N
												I / INTER
												P8 : K I L N
												P11 : LSS4 KILN
1												FEED & KILN
1												LSS5
1												CLINKERIZATIO
1					1							N

page 38

UNFCCC

											-	
												Cirebon : P9 : KILN AND AQC HOMO AND SP P10 : HOMOGNZING& KILN FEED KILN,AQC&CLIN KR.TRNS BOTTOM ASH FEEDER COAL MILL Tarjun : P12 : KILN KWH- METER WASTE OIL PALM SHELL
8.a.3	Quantity	electricity consumption for limestone production	Mining records	BELE_total_LS, y	MWh	mc	Monthly	100%	Electronic	2 years after the end of the crediting period		Citeuruep : P-4 CRS-1 / BA-4 P-3 CRUSHER-2 DP-101 P-3 CRUSHING SYSTEM P-4 CRS-2 / BA-4 4 P-4 CRS-2 / BA-4 4 P-6A CRS-1/BA-4 P-6A CRS-2/BA-4 A P-6B CRS-1/BA-5 P-6B CRS-2/BA-5 A P-6 SYS-D9 P-7 CRS/B1M.106 P-8 CRS/B1M.206 SYSTEM-D10 KWH CRS.P9 KWH CRS.P10 UNIT 3

page 39

											PROK CONVEYOR DP2-6 DP102 CONBLOCK (QUARRY-A) MINING CONVEYOR
											Cirebon : L T P 750 KVA MWB 103 MWB 109 LS CRUSHING TR FEEDE LS CRUSHER NO1 ROTOR LS CRUSHER NO2 ROTOR
											Tarjun : Feeder 2P1-1S1- U#1 (Incomg 11 kV) in LSS-3 Feeder 3P2-1S1- U#A (331-BC2- M#1 250 kW) in LSS-3 Feeder 3P2-1S1- U#B (Trafo 3P2- 1T1) in LSS-3 Feeder 3P2- 1V1/1M1 (Aux Trafo 3P2-1T1) in MCC LSS-3
8.a.4	Quantity	electricity consumption for clay production	Mining records	BELE_clay, y	MWh	m,c	Monthly	100%	Electronic	2 years after the end of the crediting period	Citeuruep : PHB-1 PHB-2 PHB-3 PHB-4 PHB-5 PHB-6 PHB-7 PHB-7 PHB-8 PHB-9 PHB-10

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

UNFCCC

page 40

											PCL01 PCL02 PCL03 PCL04 PCL05 PCA01 PCA02 PCA03 PHB-12 HAMBALANG
											Cirebon : 500 KVA MWB 202 ADD CRUSHER TR FEEDE ADDITIVE CRUSHER
											Tarjun : Feeder 2P1-1S1- U#1 (Incoming 11 kV) in LSS-3 Feeder 3P2-1S1- U#A (331-BC2- M#1 250 kW) in LSS-3 Feeder 3P2-1S1- U#B (Trafo 3P2- 1T1) in LSS-3 Feeder 3P2- 1V1/1M1 (Aux Trafo 3P2-1T1) in MCC LSS-3
8.a.5	Quantity	electricity consumption for laterite production	Mining records	BELE_laterite, y	MWh	m,c	Monthly	100%	Electronic	2 years after the end of the crediting period	Tarjun : Feeder 2P1-1S1- U#1 (Incoming 11 kV) in LSS-3 Feeder 3P2-1S1- U#A (331-BC2- M#1 250 kW) in LSS-3 Feeder 3P2-1S1- U#B (Trafo 3P2- 1T1) in LSS-3 Feeder 3P2- 1V1/1M1 (Aux

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

UNFCCC

UNFCCC

page 41

												Trafo 3P2-1T1) in MCC LSS-3
8.a.6	Quantity	electricity consumption for coal production	Plant records	BELE_coal, y	MWh	m,c	Monthly	100%	Electronic	2 years after the end of the crediting period		Citeureup : Coal Mill P.1/4 - COAL DRYER 1-4 - P4 COAL MILL Coal Mill P.6/8 - COAL DRYER 6-8 - AUX COAL MILL 6-8 - KWH COAL DRYER - P6 COAL MILL - P7 COAL MILL - P7 COAL MILL - P8 COAL MILL Coal Mill P.11 - P11 COAL MILL Cirebon : Coal Mill P.9 - COALMILL Coal Mill P.9 - COALMILL Coal Mill P.10 - P10 COAL PWR Tarjun : - PLANT 12
9	Emission factor	Grid Emission factor	Plant records	EF _{grid_BSL}	T CO2/MWh	C	monthly	100%	Electronic	2 years after the end of the crediting period	ACM0002 is used to determined electricity emissions: Based on JAVA-BALI grid emission factor. Source: Decision on the meeting on determination of CDM emission factor of JAVA- MADURA-BALI (JAMALI) Grid submitted by Chevron and agreed by the committee, Directorate General of Electricity and Energy Utilization, Jakarta, Indonesia, Friday, 11 March 2006). This is estimated based on ACM 0002. Reference for cross checking: Directorate general electricity and energy utilization	

UNFCCC

											Renewable energy division, 2006.	
10	Quantity	Self generation of electricity for clinker production	Plant records	BELEs _{g_CLNK,}	MWh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Measured & calculated as per normal operation	See attachment (Kwh Meter For Clinker.XLS)
11	Emission factor	Electricity self generation emission factor	Plant records	EF _{sg_BSL}	t CO ₂ /MWh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Measured & calculated as per normal operation	
12	Quantity	Blended cement (BC) production	Plant records	BC _{BSL}	Kilo tonnes of BC	m	monthly	100%	Electronic	2 years after the end of the crediting period	Composite of clinker, gypsum and additives	Clinker weighing feeders : P.1: 01-W-3-01 P.2: 02-W-3-01 P.10: 10-W-3-01 Gypsum weighing feeders : P.1: 01-W-3-02 P.2: 02-W-3-02 P.10: 10-W-3-02 Limestone weighing feeders : P.1: 01-W-3-03 P.10: 10-W-3-03 P.10: 10-W-3-03 Flyash weighing feeders : P.1: 01-W-3-05 P.2: 02-W-3-04 Trass weighing feeders : P.1: 01-W-3-06 P.2: 02-W-3-05 P.2: 02-W-3-05 P.2: 02-W-3-05 P.2: 02-W-3-04
13	Quantity	Grid electricity for grinding BC	Plant records	BELE _{grid_BC}	MWh	с	monthly	100%	Electronic	2 years after the end of the crediting period	Reported by local electricity provider PLN	See attachment (Kwh Meter For BC.XLS)
13.a	Quantity	Electricity for grinding BC	Plant records	ELE_BC., y	Mwh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Calculated from each kWh meter measured and installed to measure the electricity consumption for grinding blended cement .next column (right) is the measurement point code for each plant, P1 to P12, except P5 since this plant is excluded in the project	Citeureup : P1 : KWH METER FM P1 P2 : KWH METER FM P2 CLINKER WF P2 P3 : FINISH MILL 3-A FINISH MILL 3-B

page 43

P4 : CEMENT MILL 4A-1 CEMENT MILL 4A-2 CAF. 4A DISTRIB. CE FMP4A CEMENT MILL 4B-1 CEMENT MILL 4B-2 CAF.4B DISTRIB.CE FM P4B P6 : CEMENT MILL-I CEMENT MILL-II P7:CEMENT MILL P8 : CEMENT MILL 8A INDOSIN 8B ROLLER PRESS 8B P11 : LSS6A FINISH-CMT.STR LSS6B F.GRIND-CMT ST Cirebon : P9: NO.1 CEMENT NO.2 CEMENT P10: CEMENT GRINDING CM.MILL MOTOR

UNFCCC

page 44

14	Quantity	Self generation of electricity for grinding BC	Plant records	BELE _{sg_BC,}	MWh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Measured and calculated as per normal operation	Tarjun : P12 : FINISH MILL 1 CEMENT MILL 2 See attachment (Kwh Meter For BC.XLS)
15	Quantity	Grid electricity for grinding additives	Plant records	$\mathrm{BELE}_{\mathrm{grid}_\mathrm{ADD}}$	MWh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Measured and calculated as per normal operation	
15 a	Quantity	Overall electricity for limestone	Plant records	ELE_total ADD, y	Mwh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Calculated from each kWh meter measured and installed to measure the electricity consumption for grinding limestone . In the next column (right) is The measurement point code for each plant, P1 to P12, except P5 since this plant is excluded in the project	Citeureup : P-4 CRS-1 / BA-4 P-3 CRUSHER-2 DP-101 P-3 CRUSHING SYSTEM P-4 CRS-2 / BA-4 4 P-4 CRS-2 / BA-4 4 P-5 SYSTEM P-6A CRS-1/BA-4 P-6A CRS-1/BA-4 P-6B CRS-1/BA-5 P-6B CRS-2/BA-5 A P-6B CRS-2/BA-5 A P-6 SYS-D9 P-7 CRS/B1M.106 P-8 CRS/B1M.206 SYSTEM-D10 KWH CRS.P9 KWH CRS.P10 UNIT 3 PROK CONVEYOR DP2-6 DP102 CONBLOCK (QUARRY-A) MINING CONVEYOR

page 45

UNFCCC

												Cirebon : L T P 750 KVA MWB 103 MWB 109 LS CRUSHING TR FEEDE LS CRUSHER NO1 ROTOR LS CRUSHER NO2 ROTOR Tarjun : Feeder 2P1-1S1- U#1 (Incoming 11 kV) in LSS-3 Feeder 3P2-1S1- U#A (331-BC2- M#1 250 kW) in LSS-3 Feeder 3P2-1S1- U#B (Trafo 3P2- 1T1) in LSS-3 Feeder 3P2- 1V1/IM1 (Aux Trafo 3P2-1T1) in MCC LSS-3
16	Quantity	Self generation of electricity for grinding additives	Plant records	BELE _{sg_ADD,}	MWh	m,c	monthly	100%	Electronic	2 years after the end of the crediting period	Measured and calculated as per normal operation	
17	Quantity	Fuel consumption	Plant records	F _{i,j,BSL}	Tonnes of fuel i	m	monthly	100%	Electronic	2 years after the end of the crediting period	Measured and calculated as per normal operation	
18	Coefficient	CO2 emission coefficient of fuel	IPCC	COEF _{i,j,BSL}	tCO2/tonne of fuel i	m,c		100%	Electronic	2 years after the end of the crediting period	IPCC 1996 default value, WBSCD and DVZ, to maintain the consistency with the alternative fuel project	
19	Quantity	Electricity generation	Plant records	$\Sigma GEN_{i,BSL}$	MWh	m	monthly	100%	Electronic	2 years after the end of the crediting period		See attachment (Kwh Self Generation Meter.XLS)
20	Quantity	Electricity generation from the grid in the year 2004, which is used to calculate the baseline	Plant records	Gen ele grid i2004	MWh	m	monthly	100%	Electronic	2 years after the end of the crediting period	This parameter is measured at the PLN power sourcing point and	

CDM – Executive Board

page 46

UNFCCC

		rr				1						
											delivered to a single	
01	Quantity	Electricity generation	Dlant	Constant	MUT		in a state la s	1000/	Electronic	2 years after the end of the	This parameter in	
Ζ1	Quantity	from the self generation	Plant	Gen eie sg	IVI W II	m	monuniy	100%	Electronic	crediting period	This parameter is	
	l I	Diesel in the year 2004,	records	diesel i2004						or outling portou	measured at the diesel	
	l I	which is used to									generation supply point	
	l I	calculate baseline									and delivered to a single	
	ļ										33KV line for distrbution	
22	Quantity	Electricity generation	Plant	Gen ele sg	MWh	m	monthly	100%	Electronic	2 years after the end of the		
	l I	natural gas in the year	records	natural gas _{i2004}						creating period		
	l I	2004, which is used to										
		calculate baseline										
23	Quantity	Auxiliary power,	Plant	BE _{calcin}	MWh	m	monthly	100%	Electronic	2 years after the end of the		
	l I	baseline in the year	records							crediting period		
	1	calculate the baseline										
24	Quantity	Emission per ton clinker	Plant	BE _{calcin}	t CO ₂ /tonne	с	annually	100%	Electronic	2 years after the end of the		
		due to calcinations	records	culom	clinker		5			crediting period		
25	Quantity	Emission per ton clinker	Plant	BE _{fossil fuel}	t CO2/tonne	с	annually	100%	Electronic	2 years after the end of the		
	l I	due to combustion of	records	105511_1001,	clinker		5			crediting period		
	l I	tossil fuels for clinker										
26	Ouantity	Grid electricity	Plant	BE	t CO2/tonne	C	annually	100%	Electronic	2 years after the end of the		
		emissions for clinker	records	DLele_grid_CLNK,	clinker	C	annuany	10070	Licenome	crediting period		
		production	iccolus		CHIIKCI							
27	Quantity	Self generated	Plant	BE _{ele_sg_CLNK}	t CO2/tonne	с	annually	100%	Electronic	2 years after the end of the		
		clinker production	records		clinker					creating period		
28	Quantity	Grid electricity	Plant	BE L	t CO2/ tonne	C	annually	100%	Electronic	2 years after the end of the		
		emissions for BC	records	D Dele_grid_BC	BC	C	unnuuny	10070	Liceuonie	crediting period		
		grinding	records		BC							
29	Quantity	Self generated	Plant	$BE_{ele_sg_BC}$	t CO2/ tonne	с	annually	100%	Electronic	2 years after the end of the		
		BC grinding	records		BC					creating period		
30	Quantity	Grid electricity	Plant	BE _{ele grid ADD}	t CO2/ tonne	с	annually	100%	Electronic	2 years after the end of the		
	1	emissions for additives	records	ele_Blike_1055	BC		2			crediting period		
21	Quantity	preparation Solf generated	DI	DE	1 000 4		11	1000/	F1 / 1	Queero ofter the and of the		
31	Quantity	Sell generated	Plant	$BE_{ele_sg_ADD,}$	t CO2/tonne	с	annually	100%	Electronic	z years after the end of the crediting period		
		additives preparation	records		BC							
32	Quantity	Share of clinker per ton	Plant	Bblend,y	t of clinker/t	с	annually	100%	Electronic	2 years after the end of the	Calculated from no.12	
	1	of BC	records	~	of BC		5			crediting period		

CDM – Executive Board

page 47

UNFCCC

D.2.1.4. Description of formulae used to estimate baseline emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

 $BE_{BC,y} = [BE_{clinker} * B_{Blend,y}] + BE_{ele_ADD_BC}$

where:

 $BE_{BC,y}$ = Baseline CO₂ emissions per tonne of blended cement type (BC) (tCO₂/tonne BC) BE_{clinker} = CO₂ emissions per tonne of clinker in the baseline in the project activity plant (t CO₂/tonne clinker) and defined below B_{Blend,y} = Baseline benchmark of share of clinker per tonne of BC updated for year y (tonne of clinker/tonne of BC) BE_{ele_ADD_BC} = Baseline electricity emissions for BC grinding and preparation of additives (tCO₂/tonne of BC)

 CO_2 per tonne of clinker in the project activity plant in the baseline is calculated as below: BEclinker = BEcalcin + BEfossil fuel + BEele grid CLNK + BEele sg CLNK

where:

 $BE_{clinker}$ = Baseline emissions of CO₂ per tonne of clinker in the project activity plant (t CO₂/tonne clinker) BE_{calcin} = Baseline emissions per tonne of clinker due to calcinations of calcium carbonate and magnesium carbonate (t CO₂/tonne clinker) BE_{fossil_fuel} = Baseline emissions per tonne of clinker due to combustion of fossil fuels for clinker production (t CO₂/tonne clinker) $BE_{el_grid_CLNK}$ = Baseline grid electricity emissions for clinker production per tonne of clinker (t CO₂/tonne clinker) $BE_{el_grid_CLNK}$ = Baseline emissions from self generated electricity for clinker production per tonne of clinker (t CO₂/tonne clinker)

BE_{calcin} = [0.785*(OutCaO - InCaO) + 1.092*(OutMgO - InMgO)] / [CLNK_{BSL} * 1000]

where:

BE_{calcin} = Emissions from the calcinations of limestone (tCO2/tonne clinker)

0.785 = Stoichiometric emission factor for CaO (tCO2/t CaO)

1.092 = Stoichiometric emission factor for MgO (tCO2/t MgO)

InCaO = CaO content (%) of the raw material * raw material quantity (tonnes) (for raw meal already calcined)

OutCaO = CaO content (%) of the clinker * clinker produced (tonnes)

InMgO = MgO content (%) of the raw material * raw material quantity (tonnes)

OutMgO = MgO content (%) of the clinker * clinker produced (tonnes)

CLNK_{BSL} = Annual production of clinker in the base year (kilotonnes of clinker)

 $BE_{fossil_fuel} = \left[\sum_{FF_i_BSL} * EFF_i\right] / [CLNK_{BSL} * 1000]$

Where:

FF_{i_BSL} = Fossil fuel of type i consumed for clinker production in the baseline (tones of fuel i)

UNFCCC

CDM – Executive Board

EFF_i = Emission factor for fossil fuel i (t CO₂/tonne of fuel) CLNK_{BSL} = Annual production of clinker in the base year (kilotonnes of clinker)

BEele_grid_CLNK = [BELEgrid_CLNK * EFgrid_BSL] /CLNKBSL* 1000 Where:

BELE_{grid_CLNK} = Baseline grid electricity for clinker production (MWh)

EF_{grid_BSL} = Baseline grid emission factor (t CO₂/MWh)

CLNKBSL = Annual production of clinker in the base year (kilotonnes of clinker)

BEelec_sg_CLNK = [BELEsg_CLNK * EFsg_BSL] /[CLNKBSL * 1000] Where:

 $BELE_{sg_{CLNK}} = Baseline self generation of electricity for clinker production (MWh)$ $<math>EF_{sg_{BSL}} = Baseline electricity self generation emission factor (t CO₂/MWh)$ CLNK_{BSL} = Annual production of clinker in the base year (kilotonnes of clinker)

BEele ADD BC = BEele grid BC + BEele sg BC + BEele grid ADD + BEele sg ADD

where:

 $BE_{ele_grid_BC}$ = Baseline grid electricity emissions for BC grinding (tCO2/tonne of BC)

BE_{ele_sg_BC} = Baseline self generated electricity emissions for BC grinding (tCO2/tonne of BC)

BE_{ele_grid_ADD} = Baseline grid electricity emissions for additive preparation (tCO2/tonne of BC)

BE_{ele_sg_ADD} = Baseline self generated electricity emissions for additive preparation (tCO2/tonne of BC)

 $BE_{ele_grid_BC} = [BELE_{grid_BC} * EF_{grid_BSL}] / [BC_{BSL} * 1000]$

Where BELE_{grid_BC} = Baseline grid electricity for grinding BC (MWh) EF_{grid_BSL} = Baseline grid emission factor (t CO₂/MWh) BC_{BSL} = Annual production of BC in the base year (kilotonnes of BC)

 $\begin{array}{l} BE_{elec_sg_BC} = \left[BELE_{sg_BC} * EF_{sg_BSL}\right] / \left[BC_{BSL} * 1000\right] \\ Where \\ BELE_{sg_BC} = Baseline \ self \ generation \ electricity \ for \ grinding \ BC \ (MWh) \\ EF_{sg_BSL} = Baseline \ electricity \ self \ generation \ emission \ factor \ (t \ CO_2/MWh) \\ BC_{BSL} = Annual \ production \ of \ BC \ in \ the \ base \ year \ (kilotonnes \ of \ BC) \end{array}$

UNFCCC

CDM – Executive Board

BEele_grid_ADD = [BELEgrid_ADD * EFgrid_BSL] /[ADDBSL* 1000] Where BELEgrid_ADD = Baseline grid electricity for grinding additives (MWh) EFgrid_BSL = Baseline grid emission factor (t CO₂/MWh) ADDBSL = Annual consumption of additives in the base year (kilotonnes of additives)

 $BE_{elec_sg_ADD} = [BELE_{sg_ADD} * EF_{sg_BSL}] / [ADD_{BSL} * 1000]$

Where:

BELE_{sg_BC} = Baseline self generation electricity for grinding additives (MWh)

EF_{sg_BSL} = Baseline electricity self generation emission factor (t CO₂/MWh)

ADD_{BSL} = Annual consumption of additives in the base year (kilotonnes of additives)

D. 2.2. Option 2: Direct monitoring of emission reductions from the project activity (values should be consistent with those in section E).

Not Applicable. There is no direct monitoring activities for this project

	D.2.2.1. Data to be collected in order to monitor emissions from the <u>project activity</u> , and how this data will be archived:							
ID number (Please use numbers to ease cross- referencing to table D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c), estimated (e),	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment

D.2.2.2. Description of formulae used to calculate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.):

Not Applicable

D.2.3. Treatment of leakage in the monitoring plan:

D.2.3.1. If applicable, please describe the data and information that will be collected in order to monitor leakage effects of the project activity:

CDM – Executive Board

ID num ber	Data Type	Data Variable	Source of data	Symbol	Data Unit	Measured (m), calculated (c) or estimated (e)	Recording Frequency	Proportion of Data to be Monitored	How Will the Data be Archived (electronic/p aper)	For How Long is the Archived Data Kept?	Comment	instrument used to record
Truck	Load	-		-	-	-						-
1	Quantity	Fly-ash	Plant	Qadd	Tonne of	m	daily	100%	Electronic	2 years after the end of the crediting		
		truck load	records		gypsum /trip				, paper	period		
2	Quantity	Trass truck	Plant	Qadd	Tonne of	m	daily	100%	Electronic	2 years after the end of the crediting		
		load	records		gypsum /trip				, paper	period		
Ship L	oad		•	•		-				·		
Dista	nce (D _{add_s}	ource), overland										
3	Distance	Fly-ash	Plant	D _{add source}	Km/trip	m	per trip	100%	Electronic	2 years after the end of the crediting		
		carried	records	_					, paper	period		
4	Distance	Trass carried	Plant	D _{add source}	Km/trip	m	Per trip	100%	Electronic	2 years after the end of the crediting		
			records	_					, paper	period		
Dista	nce (D _{add s}	ource), overseas										
Emis	sion factor	for transport	of fuel (kg C	O ₂ /kg of fuel), TH	EF							
5	Emission	Emission factor	IPCC	TEF truck	Kg CO2/kg	e	annually	100%	Electronic	2 years after the end of the crediting		
	factor	for transport fuel			of fuel		5		, paper	period		
6	Emission factor	Emission factor for transport fuel	IPCC	TEF ship	Kg CO2/kg of fuel	e	annually	100%	Electronic	2 years after the end of the crediting period		

UNECCO

Fuel	consumpti	on for the vehi	cle per kilon	netre (kg of fuel/k	ilometre), TF (Cons					
7	Quantity	Fuel consumption	Plant	TF cons truck	Kg of	с	annually	100%	Electronic	2 years after the end of the	
		for the vehicle	records		fuel/km				, paper	creating period	
8	Quantity	Fuel consumption	Plant	TF cons ship	Kg of	с	annually	100%	Electronic	2 years after the end of the	
		for the vehicle	records		fuel/km				, paper	crediting period	
CO ₂	CO ₂ emissions/trip, by truck										
9	Emission	CO ₂	Plant		Kg of	с	monthly	100%	Electronic	2 years after the end of the	
	factor	emissions/tri	records		CO ₂ /trip				, paper	crediting period	
		p for fly-ash									
10	Emission	CO ₂	Plant		Kg of	с	monthly	100%	Electronic	2 years after the end of the	
	factor	emissions/tri	records		CO ₂ /trip		-		, paper	crediting period	
		p for trass									

D.2.3.2. Description of formulae used to estimate leakage (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

The leakage of project is from transportation of additives. To maintain the conservativeness of the project as suggested in ACM0005, the transport related emissions for raw materials and fuels likely to decrease are not included in the estimation of leakage.

The estimation of leakage is then limited to transportation of fly ash/trass and limestone, which is based on the fuel consumed to transport these additives to the cement facilities. The conveyor system for additive is valid only for limestone which is used as additives.

Ladd_trans = [(TFcons * Dadd_source * TEF)* 1/Qadd*1/1000 + (ELEconveyor_ADD * EFgrid)*1/ADDy]

where:

Ladd_trans = Transport related emissions per tonne of additives (t CO2/tonne of additive)

TFcons = Fuel consumption for the vehicle per kilometre (kg of fuel/kilometre)

Dadd_source = Distance between the source of additive and the project activity plant (km)

TEF = Emission factor for transport fuel (kg CO2/kg of fuel)

ELEconveyor_ADD = Annual Electricity consumption for conveyor system for additives (MWh)

EFgrid = Grid electricity emission factor (tonnes of CO2/MWh)

Qadd = Quantity of additive carried in one trip per vehicle (tonnes of additive)

ADDy = Annual consumption of additives in year y. (t of additives)

UNECCO

CDM – Executive Board

Leakage emissions per tonne of BC due to additional additives are determined by

Ly = Ladd_trans * [Ablend,y – Pblend,y] * BCy

where:

Ly = Leakage emissions for transport of additives (kilotonnes of CO2) BCy = Production of BC in year y (kilotonnes of BC) Ablend,y = Baseline benchmark share of additives per tonne of BC updated for year y (tonne of additives/tonne of BC) Pblend,y = Share of additives per tonne of BC in year y (tonne of additives/tonne of BC)

Ladd trans in this project is estimated for Ladd_trans of limestone, and Ladd trans of fly ash and trass. This is shown in detail in the separate excel spreadsheet, Annex3a-May 2006, worksheet "leak-ls".

D.2.4. Description of formulae used to estimate emission reductions for the <u>project activity</u> (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

 $ER y = \{[BE_{BC,y} - PE_{BC,y}]\} *BCy+Ly$

Where:

ER y = Emission reductions in year y due to project activity (thousand tonnes of CO_2)

 $BE_{BC,y}$ = Baseline emissions per tonne of BC (t of CO₂/tonnes of BC)

 $BE_{BC,y}$ = Project emissions per tonne of BC (t of CO₂/tonnes of BC)

BCy = BC production in year y (thousand tonnes)

Ly = Leakage emissions (t of CO_2)

D.2.5. Deviation from the registered PDD: Measurement and Calculation of Electricity Consumption (based on the accepted request of deviation, December 2007)

In Indocement Blended Cement Project, electricity is consumed for clinker production, grinding of blended cement and grinding of additives. The electricity supply in Citeureup plant is from both Grid and Self generated electricity, in Cirebon plant is from grid only, and in Tarjun plant is from self- generated electricity only. The explanation below provides description on how electricity consumed for clinker production, grinding of blended cement and grinding of additives are estimated.

UNECCO

1. Electricity consumption for clinker production

The electricity consumption parameters for clinker production included in this monitoring report are as follows:

- Grid electricity for clinker production, baseline (BELE_{grid CLNK)}
- Self generation of electricity for clinker production, baseline (BELEs_{g_CLNK})
- Grid electricity for clinker production, project(PELE_{gridCLNK,y})
- Self generation of electricity for clinker production, project (PELE_{sg_CLNK,y})

Both electricity consumption method of calculation from grid and self-generated supply for clinker production for baseline and project are the same. The difference is that the baseline calculates electricity consumption for clinker production in the year 2004.

The electricity consumption for clinker production from grid is then calculated as follows:

$$PELE_{grid_CLNK,y} = ELE_CLNK., y * GEN_grid_ratio$$
(1)

And The electricity consumption for clinker production from self-generated electricity source is then calculated as follows:

$$PELE_{sg_CLNK,y} = ELE_CLNK., y - PELE_{gridCLNK,y}$$
(2)

Where:

ELE__{CLNK,y} = electricity consumption for clinker production, Mwh

 GEN_{grid}_{ratio} = the ratio of electricity supply between that of the grid and that of the total electricity supply

The electricity consumption for clinker production is calculated as follows:

UNFCCC

CDM – Executive Board

 $ELE_CLNK., y = ELE_raw mill, y + ELE_kiln, y + ELE_max meal limestone, y + ELE_{clay, y} + ELE_{laterite, y} + ELE_{coal, y}$ (3)

Where:

ELE_CLNK,y	= electricity consumption for clinker production, Mwh
ELE_raw mill,y	= electricity consumption for raw mill, measured separately in each plant, with kwh meter. In each plant may have more than one
	Kwh meter to measure electricity consumption for raw mill section, Mwh
ELE_kiln,y	= electricity consumption for clinker burning in the kiln, measured separately in each plant, with kwh meter. In each plant may have
	more than one Kwh meter to measure electricity consumption for clinker burning at the kiln section, Mwh
ELE raw meal limestone,y	= power consumption for raw meal limestone in Mining, Mwh
$ELE_{clay,y} = pc$	ower consumption for clay(sandy clay) in Mining, Mwh
ELE _{laterite,y}	= power consumption for laterite in Mining (only for Tarjun), Mwh
$ELE_{coal,y} = pc$	ower consumption for coal mill section, Mwh
ELE _{raw meal limestone,y}	$= Q_{\text{raw meal LS},y} x \text{ ELEspec}_{\text{total}_{\text{LS}}} / 1000, \text{ Mwh}$

Where:

$Q \ {\rm raw \ meal \ LS}$,y	=limestone consumed for raw meal in year y, ton
ELEspec_total_LS	= specific electricity consumption for overall limestone
ELEspec_total_LS	= $1000*ELE_{total_LS}/(Q_{ADD LS}+Q_{RAWMEAL LS,y})$, kwh/t LS
ELE_total_LS	= Electricity consumption for raw meal limestone and for-additive limestone, measured by kWh meter, Mwh
Q add LS,y	= Quantity of additive limestone consumed in year y

To calculate the electricity consumption for clinker production from grid and electricity consumption from self generated, the ratio of electricity supply between that of the grid is calculated as follows:

$$GEN_{grid}_{ratio} = \frac{GEN \text{ ele grid}, y}{\sum GENi, y + GEN \text{ ele grid}, y}$$
(4)

UNFCCC

CDM – Executive Board

page 55

 $GEN_{sg_ratio} = 1 - GEN_{grid_ratio}$ (5)

Where:

GEN ele grid, y= Electricity supply from the grid, measured by Kwh meterΣ GENi, y= Sum of Electricity self-generated from the source i, measured by Kwh meters

The additional parameters which are not provided in the registered PDD is already given in the Monitoring Table.

2. Electricity consumption for Blended cement

The electricity consumption parameters for blended cement included in this monitoring report are as follows:

- Grid electricity for grinding BC, baseline (BE_{ele grid BC})
- Self generation of electricity for grinding BC. Baseline (BELE_{sg BC},)
- Grid electricity for grinding BC, project (PE_{ele_grid_BC})
- Self generation of electricity for grinding BC. Project (PELE_{sg_BC})

Both electricity consumption method of calculation from grid and self-generated supply for grinding blended cement for baseline and project are the same. The difference is that the baseline calculates electricity consumption for clinker production in the year 2004.

The electricity consumption for grinding blended cement from grid is then calculated as follows:

 $PE_{ele_grid_BC, y} = ELE_BC., y * GEN_grid_ratio$ (1)

And The electricity consumption for clinker production from self-generated electricity source is then estimated as follows:

 $PELE_{sg_BC} = ELE_BC., y - PE_{ele_grid_BC, y}$ (2)

UNECCO

Where,

 ELE_BC , y = electricity consumption for blended cement, measured for each plant by Kwh meter. In each plant may have more than one Kwh meter to measure electricity consumption for blended cement.

The additional parameters which are not provided in the registered PDD is already given in the Monitoring Table.

3. Electricity consumption for grinding additives

The electricity consumption parameters for grinding additives included in this monitoring report are as follows:

- Grid electricity for grinding additives, baseline (BELE grid ADD)
- Self generation of electricity for grinding additives, Baseline (BELE_{sg_ADD},)
- Grid electricity for grinding additives, project (PELE_grid_ADD)
- Self generation of electricity for grinding additives, Project (PELE_{sg_ADD},)

Both electricity consumption method of calculation from grid and self-generated supply for grinding additives for baseline and project are the same. The difference is that the baseline calculates electricity consumption for clinker production in the year 2004.

In the mining, raw mill limestone and additive limestone is ground and the electricity supply goes into one kWh meter for both raw mill limestone and additive limestone. Therefore, the specific electricity consumption for overall limestone, both for raw mill and additives must be calculated:

 $ELEspec_{total_LS} = 1000*ELE_{total_LS}/(Q_{ADD LS}+Q_{RAWMEAL LS}), kwh/t_{LS}$

Where:

ELEspec_total_LS	= specific electricity consumption for overall limestone
ELE_total_LS	= Electricity consumption for raw mill limestone and for mining additive limestone, measured by kWh meter, Mwh
Q add LS	= Quantity of additive limestone,t

UNFCCC

Q RAWMEAL LS =Quantity of raw meal limestone,t

The electricity consumptions for grinding additives limestone are then calculated as follows:

The additional parameters which are not provided in the registered PDD is already given in the Monitoring Table.

D.3. Qual	D.3. Quality control (QC) and quality assurance (QA) procedures are being undertaken for data monitored								
Data (Indicate table and ID number e.g. 31.; 3.2.)	Uncertainty level of data (High/Medium/Low)	Are QA/QC procedures planned for these data?	Explain QA/QC procedures planned for these data, or why such procedures are not necessary.						
Table 2.1.1, ID 1-29	Low-Medium	Yes	These data will be collected as part of normal plant level operations. QA/QC requirements consist of cross-checking these with other internal company reports. Local data and where applicable IPCC data will be used. Independent agency verification will also be used.						
Table 2.1.1 ID 9, 11	Medium	Yes	The source of uncertainties in the grid emission factor is the fuel composition mix of the grid. This will be updated every year to incorporate the changes in fuel composition mix. Data will be requested to DGEEU (directorate general of energy and electricity utilization). The uncertainty of the grid emission factor is about $\pm 10\%$. This will be verified regularly during the verification process. In the absence of actual fuel emission factor for the fuel composition mix of the self generated electricity, IPCC default value will be used.						
Table 2.1.3, ID 1-29	Low-Medium	Yes	These data will be collected as part of normal plant level operations. QA/QC requirements consist of cross-checking these with other internal company reports. Local data and where applicable IPCC data will be used. Independent agency verification will also be used.						

UNFCCC

CDM – Executive Board

page 58

Table 2.1.3,	Medium	Yes	The source of uncertainties in the grid emission factor is the fuel composition mix of the grid.
ID 9.11			This will be updated every year to incorporate the changes in fuel composition mix. Data will be
			requested to DGEEU (directorate general of energy and electricity utilization). The uncertainty
			of the grid emission factor is about \pm 10%. This will be verified regularly during the verification
			process.
			In the absence of actual fuel emission factor for the fuel composition mix of the self generated
			electricity, IPCC default value will be used.

D.4 Please describe the operational and management structure that the project operator will implement in order to monitor emission reductions and any <u>leakage</u> effects, generated by the <u>project activity</u>

CDM project operation is integrated in the normal plant management structure. All monitoring equipment will be installed by experts and regularly calibrated to the highest standards by project staff. An executive responsible for all data monitoring / acquisition and recording for CDM purposes is appointed by the Plant General Managers of Citeureup, Cirebon and Tarjun.

D.5 Name of person/entity determining the <u>monitoring methodology</u>:

1) Indocement (also project participant): <u>tc_yang@indocement.co.id</u>

2) Architrandi Priambodo, consultant: chitra_dpsolusi@cbn.net.id

3) Prototype Carbon Fund, World Bank, 1818 H Street, Washington Dc 20433. (contact Mr. Lasse Ringius, Iringius@ worldbank.org, and V. Atur, vatur@worldbank.org). PCF is a project participant.

CDM – Executive Board

page 59

SECTION E. Estimation of GHG emissions by sources

E.1. Estimate of GHG emissions by sources:

The emissions of the project activity determined per unit of clinker or per unit of BC consist of:

- Emissions from calcinations of limestone (PEcalcin,y)
- Emissions from combustion of fossil fuel and electricity for clinker production and processing of raw material PE_{fossil_fuel,y}, PE_{ele_grid_CLINK}, PE_{ele_sg CLINK},
- Emissions from electricity used for additives preparation and grinding of cement (PE_{ele_AD_BC,y}).

The estimation is based on cement projection with the increasing growth from about 35% to about 60% over 10 years.

The estimated emissions generated by sources and by facilities are given in Table 2.a, 2.b and 2.c. The emissions due to electricity consumption in Citeureup is from grid and self generated power while in Cirebon is from grid only and in Tarjun is from self-generated power only.

Citeureup		t	of CO ₂ /ton clinke	t of CO2/ton of cement	clinker to cement ratio	t of CO2/ton of cement		
Year	PE _{calcin}	PE _{fossil_fuel}	PE _{ele_grid_CLINK}	PE _{ele_sg_CLINK}	PE _{clinker}	$PE_{ele_ADD_BC}$	P _{blend}	PE _{BC,y}
2005	0.534	0.321	0.018	0.037	0.909	0.033	0.889	0.842
2006	0.534	0.310	0.012	0.040	0.897	0.032	0.873	0.815
2007	0.534	0.303	0.012	0.040	0.890	0.033	0.859	0.797
2008	0.534	0.298	0.012	0.040	0.884	0.033	0.845	0.780
2009	0.534	0.300	0.012	0.040	0.886	0.033	0.832	0.770
2010	0.534	0.300	0.012	0.040	0.886	0.033	0.820	0.760
2011	0.534	0.302	0.012	0.040	0.888	0.033	0.809	0.751
2012	0.534	0.306	0.012	0.040	0.893	0.033	0.809	0.755
2013	0.534	0.308	0.012	0.040	0.894	0.033	0.810	0.756
2014	0.534	0.307	0.012	0.040	0.894	0.033	0.810	0.757

Table. 2 a Estimated project activity emissions by sources, Citeureup

Table. 2 b Estimated project activity emissions by sources, Cirebon

Cirebon		t	of CO ₂ /ton clinke		t of CO2/ton of cement	clinker to cement ratio	t of CO2/ton of cement	
Year	PE _{calcin}	PE _{fossil_fuel}	PE _{ele_grid_CLINK}	$PE_{ele_sg_CLINK^*}$	PE _{clinker}	$PE_{ele_ADD_BC}$	P _{blend}	PE _{BC,y}
2005	0.530	0.319	0.055	N/A	0.904	0.030	0.870	0.816
2006	0.530	0.302	0.055	N/A	0.887	0.031	0.822	0.760
2007	0.530	0.298	0.055	N/A	0.883	0.031	0.822	0.757
2008	0.530	0.297	0.055	N/A	0.882	0.031	0.822	0.756
2009	0.530	0.296	0.055	N/A	0.881	0.031	0.822	0.755
2010	0.530	0.295	0.055	N/A	0.880	0.031	0.822	0.754
2011	0.530	0.295	0.055	N/A	0.879	0.031	0.822	0.754
2012	0.530	0.294	0.055	N/A	0.879	0.031	0.822	0.754
2013	0.530	0.295	0.055	N/A	0.880	0.031	0.822	0.754
2014	0.530	0.295	0.055	N/A	0.880	0.031	0.822	0.755

CDM – Executive Board

page 60

Tarjun		t	of CO₂/ton clinke	t of CO₂/ton of cement	clinker to cement ratio	t of CO ₂ /ton of cement		
Year	PE _{calcin}	PE _{fossil_fuel}	$\textbf{PE}_{ele_grid_CLINK^{\star}}$	PE _{ele_sg_CLINK}	PE _{clinker}	PE _{ele_ADD_BC}	Pblend	PE _{BC,y}
2005	0.536	0.274	N/A	0.093	0.904	0.054	0.894	0.862
2006	0.536	0.282	N/A	0.091	0.909	0.054	0.862	0.839
2007	0.536	0.279	N/A	0.091	0.906	0.054	0.862	0.836
2008	0.536	0.278	N/A	0.091	0.905	0.054	0.862	0.835
2009	0.536	0.276	N/A	0.091	0.903	0.054	0.862	0.834
2010	0.536	0.275	N/A	0.091	0.902	0.054	0.862	0.833
2011	0.536	0.275	N/A	0.091	0.902	0.054	0.862	0.833
2012	0.536	0.275	N/A	0.091	0.902	0.054	0.862	0.833
2013	0.536	0.276	N/A	0.091	0.903	0.054	0.862	0.833
2014	0.536	0.276	N/A	0.091	0.903	0.054	0.862	0.833

Table. 2 c Estimated project activity emissions by sources, Tarjun

E.2. Estimated <u>leakage</u>:

The leakage of project is mainly from transportation of additives. To maintain the conservativeness of the project as suggested in ACM0005, the transport related emissions for raw materials and fuels likely to decrease are not included in the estimation of leakage.

The estimation of leakage is then limited to:

- a) Transportation of fly ash/trass, which is based on the fuel consumed to transport these additives to the cement facilities. Since there is no conveyor system for additive, the emissions from electricity consumption of conveyor system for additives do not exist in this project.
- b) Transportation of increased limestone which is due additional limestone used in grinding Phase in PCC production. This transportation includes overland transportation and due to limestone conveying using electricity from grid or self generating, depending on the plant.

Table 3 illustrates the emission factors from transportation of fly-ash, trass and limestone at different location.

In the final fly-ash/trass consumption, it is decided that in Citereup, the consumption of fly-ash and trass to produce PCC is 1:1, which makes the emission factors of fly-ash/trass is the average of both emission factors for fly-ash and trass. Trass is used as additive to produce PPC in Cirebon while fly-ash is used as additive in Tarjun. These additives are used at particular place due to its abundant availability at specific location and also the considering transportation distance. Trass is available in abundant in java and it is more convenient in terms of transport for production of PCC in cement plants in Java while in kalimantan, due to abundant amount of coal, fly-ash availability is unquestionable. Fly ash is available in Java, but the transportation to Cirebon is more costly. Therefore, the estimation of leakage in the spreadsheet only estimates fly ash share in Cirebon as zero.

The baseline for limestone as additive includes the limestone used as additives for relevant cement types which would be replaced by PCC.

Table 4 gives estimation of leakages in this project.

UNFCC

page 61

Table 3 CO2 emissions from fly-ash, trass and limestone per ton of additives

Additives	Citeureup	Cirebon	Tarjun	
Limestone, (kg of				
CO2/t of limestone)	4.6	1.6	6.6	
Average fly-ash/trass (kf of CO2/t of fly-				
ash/trass)	5.6	0.8	22.6	

Year	Leakage, t of CO ₂			Total
	Citeureup	Cirebon	Tarjun	
2005	-266	-929	313	-882
2006	-936	-1494	151	-2279
2007	-1491	-1489	171	-2808
2008	-2092	-1484	193	-3383
2009	-2742	-1479	214	-4006
2010	-3444	-1473	236	-4681
2011	-4201	-1468	258	-5411
2012	-4405	-1463	281	-5586
2013	-4610	-1457	304	-5762
2014	-4816	-1452	328	-5940

Table 4. Estimation of Leakages

E.3. The sum of E.1 and E.2 representing the project activity emissions:

The sum of E.1 and E.2 are calculated separately, referring to the approved consolidated methodology ACM 0005.

E.4. Estimated anthropogenic emissions by sources of greenhouse gases of the <u>baseline</u>:

In estimating the baseline emissions, there are several conditions and parameters that to be determined as follows:

1. Benchmark of clinker to cement ratio, B_{Blendy}

Consistent with the methodology ACM0005, and explanation on selection on benchmark baseline emissions in section B.2, The representative year taken for the baseline is 2004, because the project starts in 2005. Table 5 gives the estimation of the baseline benchmark options as follows:

i. The average (weighted by production) mass percentage of clinker for the 5 highest Total Cement brands in Indonesian cement market: Indocement, Semen Gresik, Semen Cibinong, Semen Padang and Semen Tonasa. The baseline benchmark clinker to cement ratio value is estimated to be 0.898.

- ii. The production weighted average mass percentage of clinker for the Total Cement in the top 20% (in terms of share of additives) of the total production of the blended cement type Indonesian cement market. Table 5 illustrates the estimate of the production weighted average mass percentage of clinker for the Total Cement in 90% of cement market consisting of Indocement, Semen Gresik, Semen Cibinong, Semen Padang and Semen Tonasa. The scope of national cement market for relevant cement type (Total Cement) is limited to these 90% of market share since these are the brands that are really sold in national market (at least more than 2 regions of the cement market listed in Table 1). It shows that the top 20% is the ITP cement with the baseline benchmark clinker to cement ratio value of 0.898 (In red).
- iii. The mass percentage of clinker for the Total Cement produced in the proposed project activity plant before the implementation of the CDM project activity. The estimated weighted average clinker to cement ratio value in 2004 prior to the implementation of project activity at Indocement is estimated as 0.898 (in red).

Based on these options, the lowest value is the option (ii) and (iii) which is the Indocement clinker to cement ratio which is 0.898. This is taken as B_{Blendy} in the calculation of baseline emissions for all facilities: Citeureup, Cirebon and Tarjun.

Brands	Share of clinker in 2004 for total cement	Production Volume in 2004	Share of production (%)
ITP	0.898	9051742	0.335
Gresik	0.913	7331689	0.271
Cibinong	0.921	4550654	0.168
Padang	0.914	3719907	0.138
Tonasa	0.937	2379764	0.088
Total		27033756	

Table 5 Estimation of baseline benchmark clinker to cement ratio, B_{Blend}

2. Baseline trend: increase in additives

Since the selected baseline benchmark values is the Indocement value of 0.898, the baseline trend of increase in additives is also based on the trend of Indocement's increase in additive. Table 6 illustrates the increasing rate of additive in 2000 to 2004. It shows that from 2002 to 2003 the increase rate of additive is 20% while from 2003 to 2004 the increase rate is only 5%, reaching the optimum additive share according to standard SNI 15-3500-1994 (OPC Type I). During those times, indocement has made a trial to produce new type of cement but the standard of this type of cement did not exist. In the absence of the project, the share of additive would stay and be maintained at 0.102. However, to keep the conservativeness, the baseline increase rate for this project is taken as 2%, which follows the option (ii) and option (iii) of the ACM 0005.

Table 6 The share of additive and increase rate of additive of indocement's relevant type of cement (OPC Type I + PPC).

Year	Share of additives, 2000-2004	Increase rate
2000	0.040	
2001	0.044	12%
2002	0.081	83%
2003	0.097	20%
2004	0.102	5%

3. Determination of Baseline emission clinker (BE _{clinker, y}) and Baseline cement grinding emission factor, BEele_ADD_BC

In certain year y, the BE _{clinker,y}, determination of Baseline emission clinker follow condition (i) where in case of emissions per tonne of clinker during the crediting period are less than baseline emissions per tonne of clinker ($PE_{Clinker,y} < B_{EClinker}$), the baseline value is substituted by the project activity value. That is, if emissions per tonne of clinker are lower during the crediting period, the lower value is taken as the baseline. The adjusted baseline value following this condition is reflected in row "adjusted baseline clinker emission factor" in the spreadsheet "annex 3a-blended cement". This condition applies even in the absence of the alternative fuel project which is currently conducted by Indocement in parallel with this project.

Similar approach is also applied to Baseline cement grinding emission factor, BEele_ADD_BC

Estimation of project emissions and baseline emissions are applying more or less the same formula, however, the baseline emissions are estimated based the consumption of fuel and electricity in the production of clinker and blended cement monitored one year prior to the start of the project activity, which is in the year of 2004 (refer to ACM 0005). In Annex 3.a blended cement, worksheet "Estimation of ER", the parameters related to emissons due to fuel consumption and electricity of the year 2004 becomes baseline, while starting from 2005 it becomes project emissions.

The estimated baseline emissions per ton of cement generated is given in Table 7.

Year	BE _{clinker}	$BE_{ele_ADD_BC}$	B _{blend}	$BE_{BC,y}$
2005	0.896	0.033	0.898	0.837
2006	0.896	0.032	0.896	0.835
2007	0.890	0.033	0.894	0.828
2008	0.884	0.033	0.891	0.821
2009	0.886	0.033	0.889	0.820
2010	0.886	0.033	0.887	0.819
2011	0.888	0.033	0.885	0.818
2012	0.893	0.033	0.883	0.820
2013	0.894	0.033	0.880	0.820
2014	0.894	0.033	0.878	0.817

Table 7.a . Estimated ba	aseline emissions for	r Citeureup, CO	2/ton of cement
--------------------------	-----------------------	-----------------	-----------------

UNECO

Year	BE _{clinker}	$BE_{ele_ADD_BC}$	B _{blend}	BE _{BC,y}
2005	0.896	0.030	0.898	0.834
2006	0.887	0.031	0.896	0.825
2007	0.883	0.031	0.894	0.820
2008	0.882	0.031	0.891	0.817
2009	0.881	0.031	0.889	0.814
2010	0.880	0.031	0.887	0.811
2011	0.879	0.031	0.885	0.809
2012	0.879	0.031	0.883	0.807
2013	0.880	0.031	0.880	0.805
2014	0.880	0.031	0.878	0.803

Table 7.b Estimated baseline emissions for Cirebon, CO2/ton of cement

Table 7.c Estimated baseline emissions for Tarjun

Year	BE _{clinker}	BE _{ele_ADD_BC}	B _{blend}	BE _{BC,y}
2005	0.896	0.033	0.898	0.837
2006	0.896	0.033	0.896	0.835
2007	0.896	0.033	0.894	0.833
2008	0.896	0.033	0.891	0.831
2009	0.896	0.033	0.889	0.829
2010	0.896	0.033	0.887	0.827
2011	0.896	0.033	0.885	0.825
2012	0.896	0.033	0.883	0.823
2013	0.896	0.033	0.880	0.821
2014	0.896	0.033	0.878	0.819

E.5. Difference between E.4 and E.3 representing the emission reductions of the <u>project activity</u>: The estimated emission reductions during the 10-year crediting period are about 5 million tonnes of CO2 emissions.

E.6. Table providing values obtained when applying formulae above:

Estimated emissions reductions during the 10-year crediting period are given in Table 8. It should be noted hat the estimation of the project emissions and baseline emissions for the project are derived and summed up from calculation for each separate cement facility: Citeureup, Cirebon and Tarjun.

CDM – Executive Board

page 65

UNFCC

Table 8. Estimated emissions reduction during the 10-year crediting period

	Estimation of project emissions	Estimation of baseline emissions	Estimation of leakage	Estimation of emissions reductions
Years	(t CO2 e)	(t of CO2 e)	(t of CO2 e)	(t of CO2 e)
2005	7876270	7855744	-882	-21408
2006	7741867	7994481	-2279	250335
2007	7991000	8318745	-2808	324936
2008	8262922	8663967	-3383	397661
2009	8585174	9068996	-4006	479817
2010	8911752	9482836	-4681	566403
2011	9263693	9928486	-5411	659382
2012	9741085	10418711	-5586	672040
2013	10221949	10908445	-5762	680734
2014	10713410	11406946	-5940	687596
Total estimated emissions reductions				4697497