

CDM MONITORING REPORT #17 rev 2 of "N2O Emission Reduction in Onsan, Republic of Korea" UNFCCC 0099

From: July. 1st, 2008 To: July. 31st, 2008

Rhodia Energy SAS Tour La Pacific. 11, cours Valmy La Defense 7 92977 Paris La Defense, France TEL : +33 1 53 56 61 02 FAX : +33 1 53 56 61 10

e: September 9th, 2008

Pascal Siegwart, Rhodia Energy SAS

Rhodia Monitoring Report # 17 : rev 2 September 9th, 2008

Table of Contents

- 1. Introduction
- 2. Reference
- 3. Definition
- 4. General description of project
- 5. Baseline methodology
- 6. Applicability of the methodology
- 7. Monitored parameters
- 8. Quality control (QC) and quality assurance (QA)
- 9. GHG Calculations
- Appendices 1~17

1 Introduction

The purpose of this monitoring report is to calculate and clarify GHG emission reduction quantity achieved by this project for periodic verification.

This monitoring report covers the activity from July 1st, 2008 to July 31st, 2008 as the 17th crediting period.

Duration of the project activity period The starting date of the project is defined as 01/09/2006.

2. Reference

Approved Baseline methodology :

Baseline Methodology for decomposition of N2O from existing adipic acid production plants (AM0021 version 1)

Approved Monitoring methodology :

Monitoring Methodology for decomposition of N2O from existing adipic acid production plants (AM0021 version 1)

Project Design Document :

N2O Emission Reduction in Onsan, Republic of Korea. Version number of the document : 8 Date : September, 1st 2005

CDM registration number :

"N2O Emission Reduction in Onsan, Republic of Korea" - UNFCCC ref number 0099

3. Definition

- y : Monitoring period (period as defined in the first paragraph)
- PDD : Project Design Document of this project "N2O Emission Reduction in Onsan, Republic of Korea." Version number of the document: 8, issued on September, 1st 2005

4. General description of project

Project activity

Nitrous oxide (N2O) is a by-product of adipic acid production. It is of low toxicity but is a greenhouse gas (GHG), whose GWP is large (GWP=310 in the IPCC 2nd Assessment Report). Emissions of N2O will be controlled under the Kyoto Protocol. As far as we are aware, there are however no national or regional regulations or restrictions on the emission of N2O in South Korea. There are in fact no governmental regulations with quantified emission limits in any non-Annex I countries at this point.

In this project, Rhodia Polyamide Co. Ltd additionally installed N2O collection and a thermal decomposition process equipment to the currently operating adipic acid manufacturing plant. This installation reduces the GHG emissions, which would otherwise be released to the atmosphere if the project was not implemented.

The decomposition facilities was installed in the factory site of Onsan Rhodia Polyamide Co., Ltd. in May 2006 and destruction of N2O was started in September 2006. The starting date of the project is defined as 01/09/2006.

This project activity was registered at UNFCCC on November 27th 2005 with the number 0099.

Technical description of the project

Location of the project activity

The decomposition facilities were installed in the factory site of Onsan Rhodia Polyamide Co. Ltd, in May 2006. The surrounding area is the Onsan industrial complex area.

Technology to be employed by the project activity

A thermal oxidizer with 2 chambers is the technology used to decompose N2O.

Natural gas is fed with the off gas adipic acid production containing N2O and some air in a reduction chamber, where it burns (oxidizes) to carbon dioxide CO2 and water vapour. N2O is used as an oxidizer. Being oxygen deficient, the oxidation is not complete and carbon monoxide and hydrogen are present.

 $\mathrm{CH4} + 4 \; \mathrm{N2O} \rightarrow \; \mathrm{CO2} + 2 \; \mathrm{H2O} + 4 \; \mathrm{N2}$

The temperature in the furnace is kept at about 1300°C and under fuel rich conditions, so as to promote the complete decomposition of N2O while minimizing the formation of unwanted combustion by-products such as NO and NO2.

The gas is then quenched with air to complete the combustion of carbon monoxide and hydrogen at a temperature of about 950°C in a second chamber. Steam and ammonia are injected to control the emission of NO and NO2.

Rhodia

Before release to the stack, the flue gas coming from the thermal oxidizer is used to produce saturated steam, which is fed into the existing on-site steam network.

5. Baseline methodology

Approved baseline methodology AM0021 version 1 : "Baseline methodology for decomposition of N2O from existing adipic acid production plants", is applied to this project

The project boundary related to the baseline methodology is shown below and this project boundary is used and explained in the PDD.

Potential sources of anthropogenic emissions by sources of GHG within the project boundary and emissions which are not included in the project boundary are also shown in below.

6. Applicability of the methodology

Approved monitoring methodology AM0021 version 1 is applied to this project

This methodology is applicable to projects which decomposes N2O from an adipic acid production plant under the following conditions:

- Either catalytic or thermal decomposition of the N2O by-product of adipic acid production at existing production plants
- The methodology is spatially generic, being applicable across regions where the data (both related and project activity as well) exist to undertake the assessment
- The methodology is applicable only for installed capacity (measured in tonnes of adipic acid per year) that exists by the end of the year 2004.

The present project satisfies these conditions as

- Thermal decomposition of the N2O by-product of adipic acid production was implemented in an existing production plant
- All required data (see following paragraph) are available and used

Rhodia Monitoring Report # 17 : rev 2 September 9th, 2008

• The production of adipic acid within the current year is below the installed capacity that exists by the end of the year 2004 and defined in the PDD.

For the sake of clarity, the amount of Emission Reductions can exceed the amount calculated in a year period in the PDD in "SECTION E. Estimation of GHG emissions by sources" as all data were conservative, in particular the performance of the N2O abatement unit (in fact, %_on-line (unit efficiency) > 85%, and destruction rate > 99%)

7. Monitored Parameters

According to the methodology AM0021 version 1 and the Monitoring Plan, the data being collected to monitor the GHG reduction are given in the table below:

ID	Data variable	Source of data	Data unit	Recording frequency	Reference
Q_GE	Volume of effluent gas leaving the stack	Flow meter	Nm ³	Monthly	Appendix 1
N ₂ O_GE	Concentration of N ₂ O in the effluent gas	Infra –Red online analyzer	ppm	Monthly	Appendix 2
ND_N2O	Quantity of N ₂ O in the effluent gas leaving the stack	Calculated from Q_GE and N ₂ O_GE	Kg- N ₂ O	Monthly	Appendix 3
Q_NG	Amount of natural gas burned	Natural gas meter	Nm ³	Monthly	Appendix 4
NGC	Natural gas composition required for calculation of E_NG	Gas supplier	-	Monthly	Appendix 5
%_on-line	% of production time the position switches on the by-pass valves are closed	Position switches on by-pass valves	% of production time	Monthly	Appendix 6
Q_N2O_b y-pass	N2O by passing the decomposition facility	Calculated from Q_N2O and %_on-line	kg	Monthly	Appendix 7

ID	Data variable	Source of data	Data unit	Recording frequency	Reference
P_AdOH	Amount of adipic acid production	Log sheet for packaged product and DCS for silo inventory	tonne AdOH	Monthly	Appendix 8
Nitric acid consumpti on (HNO3_c onsumptio n) & physical losses in the adipic acid production process (HNO3_ph ysical)	All data required for calculation of HNO ₃ chemical and the N2O emission factor N2O_AdOH	Excel workbook based on the raw material consumption, DCS data and Lab data	-	Monthly	Appendix 9
Q N ₂ O reg	Per Korean regulation allowed N ₂ O emissions	South Korean regulation	kg	Date when relevant legislation is in place	Appendix 10
N ₂ O reg/AdOH	Per Korean regulation allowed N ₂ O emissions per kg of adipic acid produced	South Korean regulation	kg	Date when relevant legislation is in place	Appendix 10
r _y	Per Korean regulation required share of N ₂ O emissions to be destroyed	South Korean regulation	%	Date when relevant legislation is in place	Appendix 10
P N ₂ O	Market price of N ₂ O	Estimated	€/t	Yearly	Appendix 11
Q_Steam_ p	Amount of steam produced by the decomposition process	Steam meter	kg	Monthly	Appendix 12
Steam supplier data	All data required for calculation of E_Steam	External steam supplier and steam properties	-	Yearly	Appendix 13

ID	Data variable	Source of data	Data unit	Recording frequency	Reference
Q_Power	Electric consumption of the decomposition facility	Electricity meter	kWh	Monthly	Appendix 14
Electricity grid data	All data required for calculation of E_Power according to ACM0002 version 2	Korean Energy Economics Institute	-	Yearly	Appendix 15
Q_Steam_ c	Amount of steam consumed by the decomposition facility	Steam meter	kg-steam	Monthly	Appendix 16
Steam suppliers data	All data required for calculation of E_Steam_c	Internal & External steam suppliers	-	Yearly	Appendix 17

8. Quality Control (QC) and Quality Assurance (QA)

8.1. Quality Management System

The thermal oxidation plant is operated by Rhodia operating personnel. Rhodia has assigned the responsibility for operating, monitoring and reporting to the Adipic Acid Plant Manager.

The operation, data transfer and reporting procedures are incorporated into the ISO9001 procedures of the Onsan Adipic Acid plant

The personnel have been trained by the technology supplier i.e. M/s John Zink International Luxembourg.

8.2. Quality control (QC) and quality assurance (QA) procedures that are being undertaken for data monitored

The Onsan plant is certified according to ISO9001 and applies appropriate QA & QC procedures.

The equipment and analytical methods given by the technology supplier M/s John Zink International Luxembourg as well as those supplied by Rhodia are done according to internationally accepted standards.

The QA & QC procedures are set and implemented in order to:

- 1. Secure a good consistency through planning to implementation of this CDM project and,
- 2. Stipulate who has responsibility for what and,
- 3. Avoid any misunderstanding between people and organization involved.

Data	Uncertainty	Explain QA/QC procedures planned for these data, or why such procedures are not
(Indicate table	level of data	necessary.
and ID number	(High/Medium/	
e.g. 31.; 3.2.)	Low)	
2a.1. (D.2.1.1)	Low	This flow meter is measured with an Averaging Pitot tube.
Q_GE		This instrument is considered as a critical instrument in the QA/QC procedure.
2a.2. (D.2.1.1)	Low	Existing procedures are applied to this analyzer for QA & QC.
N_2O_GE		
2a.4. (D.2.1.1)	Low	Is measured using natural gas meter from the supplier and as such is part of a regular
Q_NG		procedure control between the Natural Gas supplier and Rhodia.
2b.1. (D.2.1.3)	Low	Is obtained from production records of the ONSAN adipic acid plant where the N_2O
P_AdOH		waste originates. A QA/QC procedure is implemented. Production quantity is based on
		the packaged product plus silo volume.
2a.5. (D.2.1.1)	Low	Use opening of high integrity performance connecting valves to limit leaks. Procedures
%_on-line		currently in place in Chalampé for monitoring N_2O emissions have be implemented in
		ONSAN to periodically check their tightness and assure their good operation. They
		have been added to the QA/QC existing procedures.
2b.7. (D.2.1.3)	Low	Steam meter placed on the list of critical instrument data in the QA/QC procedures
Q_Steam_p		
3.1. (D.2.3.1)	Low	Electricity meter. Standard procedures are used. No QA/QC procedures implemented
Q_Power		as this flow represents less than 0.01% of the baseline emissions.
3.4. (D.2.3.1)	Low	Steam meter placed on the list of critical instrument data in the QA/QC procedures.
Q_Steam_c		

8.3. Calibration/Maintenance of Measuring and Analytical Instruments

All measuring and analytical instruments are being calibrated as per the methodology AM0021 version 1 and created as a protocol in Onsan's Quality management system procedures.

The maintenance methods and procedures have been incorporated as part of the ISO9001 procedures and form an integral part of the systems and procedures for the organization.

During this period, we made Calibration/Maintenance of Measuring and analytical instruments according to PDD

8.4. Environmental Impact

The Thermal oxidation plant has been installed with on line analyzers to monitor constantly some parameters that are required by Korean legislation.

According to local government environmental low, NOx value is continually transmitted to local government agency as a part of the TeleMonitoring System (TMS) from July 1st 2007.

To make sure of the on-line analysis value, KumHo Environmental Co, Ltd had carried out the analysis of the gas discharged from the N2O stack during this monitoring period. The analysis values were under the control specification limit of the Korea environmental regulation and the average values of those results are shown in the table below.

(KumHo Company has an analysis license for air emission which is permitted by the Korean environmental government)

Parameter	Unit	Value as per applicable standard	On-line analysis value of the period	Average value in monitoring period by KumHo
СО	ppm	50 max	< 10 ppm	Not measured
NH3	ppm	50 max	-	< 2 ppm
NOx	ppm	200 max	50 ppm	51 ppm

Table showing analysis Gaseous Emission for Thermal Oxidation plant

The project was compliant with all environmental Korean regulation.

9. GHG Calculations

Statement of GHG emission reduction in this monitoring period.

As suggested by the methodology (AM0021 Version 1), the GHG emission reduction, (ERy), achieved by the project activity for the period is ERy = BEy - PEy - Ly

9.1. <u>Calculation of Q_N2Oy</u>

It has been checked that there are no Korean regulation into place that would limit the quantity of N_2O emitted that can be taken into account for the calculation of the baseline emissions (see D.2.1.4. in the PDD).

The quantity Q_N2Oy of N2O emitted over the period can then be calculated by: $Q_N2Oy = P_AdOH \times N2O_AdOH$

Over the period of reference the emission factor from the adipic acid plant was above the capped value of 0.27 kg N2O/kg AdOH (see appendix 9). So the capped value is being used according to AM0021 version 1.

Parameter	value	Reference
Q_N2Oy	3 290 490 kg	Calculated
P_AdOH	12 187 ton	Appendix 8
N2O_/AdOH	0.27 kg N2O/kg AdOH	Appendix 9
Q_N ₂ O reg	No limit	Appendix 10
N ₂ O_reg / AdOH	No limit	Appendix 10
r _y	NA	Appendix 10

As the total production of adipic acid over the year ending with the last day of this period is below the nameplate capacity of the adipic acid plant (information available in the Excel Workbook "ER ONSAN", sheet AM, submitted to UNFCCC), the total production of this period can be used as such.

The Executive Board has confirmed on EB36 the application of a yearly Adipic acid production cap as required by the methodologies (issue 10f the Requests for review for the Monitoring Period #9 of 08 Aug 07 - 31 Aug 07).

9.2. Calculation of baseline emissions

The amount of baseline emissions in the given period y (measured in t CO2 eq.) is calculated by $BEy = Q N2O_v \times GWP N2O + Q$ Steam $p_v \times E$ Steam_v

and rounded down in t CO2 eq. to get conservative consistency of final calculation of Emission Reductions formula.

Parameter	value	Reference
BEy	1 022 193 t CO2 eq.	Calculated
Q_N2O _y	3 290 490 kg	Calculated in 9.1
GWP_N2O	310	Kyoto Protocol Rule.
		Decision 2/CP.3
Q_Steam_p _y	17 554 100 kg of steam	Appendix 12
E_Steam _y	0.122 kg-CO2/kg of steam	Appendix 13

9.3. <u>Calculation of (Q_N2O x (1-%_on-line))y</u>

The quantity of N2O that has by-passed the decomposition facility is calculated from the adipic acid production made while by-passing the decomposition facility.

The quantity of adipic acid produced while by-passing the destruction facility is monitored and the quantity of N2O that by-pass the decomposition facility is registered daily: Q N2O by-pass = P AdOH x (1-% on-line) x N2O /AdOH

This value is a value by excess as during each connection/ disconnection phases the production is counted as completely by-passed.

The quantity of N2O that by-passed the decomposition facility over the period is:

Rhodia Monitoring Report # 17 : rev 2 September 9th, 2008

$(Q_N2O \times (1-\%_on-line))y = Q_N2O_by-pass_y$

The %_on-line_y equivalent over the period is calculated as: % on-line_y = 1 - (Q N2O by-pass_y/Q N2O_y)

Parameter	Value	Reference
Q_N2O_by-pass _y	0 kg	Appendix 7
P_AdOH	12 187 ton	Appendix 8
N2O_/AdOH	0.27 kg N2O/kg AdOH	Appendix 9
%_on-line _y	100 %	Appendix 6

9.4. Calculation of project emissions

The emissions due to the decomposition process PEy are the emissions due to the N2O that has not been sent to the decomposition process, the N2O non destroyed by the decomposition process and the emissions due to the use of natural gas.

PEy = ((Q_N₂O x (1-%_on-line))y + (Q_GE x N₂O_GE x Specific_gravity_of_N2O)y) x GWP_N₂O + Q_NGy x E_NGy (The specific gravity of N2O is used to transform vppm in kg/ Nm3)

 $PEy = (Q_N2O_by-pass_y + (Q_GE \ x \ N_2O_GE \ x \ Specific_gravity_of_N2O)y) \ x \ GWP_N_2O \ + Q_NGy \ x \ E_NGy$

The non-destroyed N₂O (ND_ N₂O y) is constantly monitored and obtained from the constant monitoring of the flow (Q_GE) and the concentration of N₂O (N₂O _GE) of the effluent gas: ND_ N₂O = Q_GE x N₂O _GE x Specific_gravity_of_N2O

 $PEy = (Q_N2O_by-pass_y + ND_N_2O_y) \ x \ GWP_N_2O + Q_NGy \ x \ E_NGy \\ PEy \ is \ rounded \ up \ in \ t \ CO2 \ eq. \ to \ get \ conservative \ consistency \ in \ final \ calculation \ of \ emission \ reductions \ formula.$

Parameter	Value	Reference
РЕу	2 317 t CO2 eq.	Calculated
Q_N2O_by-pass _y	0 kg	Appendix 7
Q_GE	13 158 066 Nm ³	Appendix 1
N ₂ O_GE	5 vppm	Appendix 2
Specific _gravity_of_N2O	1.963 x 10^-6	Appendix 2 or 3
ND_N ₂ O _y	130 kg N ₂ O	Appendix 3
GWP_N ₂ O	310 kg CO2 eq./ kg N ₂ O	Kyoto Protocol Rule.
		Decision 2/CP.3
Q_NGy	$1\ 027\ 3\overline{33}\ \mathrm{Nm}^3$	Appendix 4
E_NGy	$2.214 \text{ kg CO2 eq./ Nm}^3$	Appendix 5

Note :

- 1) The value of E_NGy shown above is the yearly moving average of E_NG as required by the PDD for calculation of E_Steam. The project emissions are more accurately calculated using monthly values of E_NG shown in Appendix 5, following the methodology AM0021 version 1 and the Monitoring Plan.
- 2) The value of ND_N2Oy is calculated by the DCS using every 10 second data of Q_GE and N2O_GE (see Appendix 2 and 3) and is more accurate than the value calculated using total average values.

9.5. Calculation of leakage

Leak emissions comprise the emissions associated with the energy sources used to generate any steam and electricity used by the decomposition plant.

Leakage amounts to:

 $L_y = Q_Power \times E_Power + Q_steam_c_y \times E_steam_c_y$

Ly is rounded up in tCO2 eq. to get conservative consistency in final calculation of emission reduction formula.

Parameter	value	Reference
Ly	121 t CO2 eq.	Calculated
Q_Power	179 704 kWh	Appendix 14
E_Power	0.597 kg-CO ₂ /kWh	Appendix 15
Q _Steam_ c_y	98 959 kg	Appendix 16
E_Steam_c _y	0.134 kg-CO ₂ / kg of steam	Appendix 17

9.6. Calculation of emission reduction

The total emission reduction achieved by this project activity during this monitoring period is therefore,

ERy = BEy - PEy - Ly

Or,

ERy = 1 022 193 t CO2 eq. - 2 317 t CO2 eq. - 121 t CO2 eq.

Or,

```
ERy = 1 019 755 t CO2 eq.
```

The above emission reduction covers the generation of N2O during this monitoring period.

<u>Appendix 1</u>

Name of item Description	Q_GE Volume of effluent gas leaving the stack
Value in period	13 158 066 Nm3
Method of monitoring	Annubar flow meter
Recording frequency Background data	Monthly Log sheet record / flowmeter
	Following the request for review for a faulty flow measurement of the waste gases Q_GE on July 4 th during 4 hours, the full adipic production and steam production of that day are removed in order not to account the BE of this day.

Period	Quantity of gaseous effluent Nm ³
July $1^{st} \sim July 31^{st}$	13 158 066

Name of item	N2O_GE Concentration of N.O in the offluent gas
Description	
Value in period	5 vppm
Method of monitoring	Laser diode online analyzer
Recording frequency	Monthly
Background data	Log sheet record The instant values of the on line analyzer are used to calculate
Calculation method	the quantity of ND N2O every 10 sec:
	ND N2O = O GE * N2O GE * Specific gravity of N2O
	The specific_gravity_of_N2O = $44/22.414 \times 10^{-6}$ is used to transform vppm in kg/ Nm3
	The analyzer has a range of 0-200 vppm with a detection limit of 5 vppm, which is used as a default value when the measured value is below the detection limit. Cumulated value for ND_N2O is recorded (see appendix 3).
	At the end of the month/period based upon the flow Q_GE, and ND_N2O the concentration of N2O equivalent for the month/period is calculated.

This value is for information as the constant calculation of ND_N2O is more accurate.

Period	ND_N2O	Quantity of gaseous	Average concentration
		effluent	of N ₂ O_GE
	kg	Nm ³	vppm
July $1^{st} \sim July 31^{st}$	130	13 158 066	5

Name of item Description	ND_N2O Quantity of non-destroyed N2O emitted by the decomposition facility
Value in period	130 kg N ₂ O
Method of monitoring Recording frequency Background data Calculation method	On-line DCS calculation Monthly Log sheet record Actual quantity of non destroyed N2O is calculated on-line in the DCS from the concentration of N2O and the flow rate of the gaseous effluent: ND_N2O = Q_GE * N2O_GE * Specific_gravity_of_N2O The specific_gravity_of_N2O = 44/22.414 x 10^-6 is used to transform vppm in kg/ Nm3

Period	ND_N2O
	kg
July 1 st ~ July 31 st	130

Name of item
Description

Value in period

Q_NG Amount of natural gas used by the decomposition process

1 027 333	3 Nm3
-----------	-------

Method of monitoring Recording frequency Background data Natural gas consumption data Monthly Log sheet record / flowmeter

Period	Q_NG Nm ³
July 1 st ~ July 31 st	1 027 333

Name of item Description	E_NGy with NGC Emission coefficients for natural gas combustion Natural Gas Composition (NGC) from Supplier for natural gas
Value in period for E_NG _y	$2.214 \text{ kg CO}_2/\text{Nm}^3$
Method of monitoring	Natural Gas Composition (NGC)
Recording frequency	Monthly
Background data	Composition data received from Kyung Dong City Gas Ltd, the natural gas supplier
Calculation method	The average number of C in a mole of NG is calculated from
	the composition = \sum (number of C in each mole) x (volume ratio)
	Following monthly data are used to calculate monthly project emissions due to the consumption of Natural Gas.

Component	July Natural Gas Composition	Number of C
CH4 (Methane)	91.07	1
C2H6 (Ethane)	5.54	2
C3H8 (Propane)	2.22	3
I-C4H10 (I-Butane)	0.47	4
N-C4H10 (N-Butane)	0.49	4
I-C5H12 (I-Pentane)	0.02	5
N-C5H12 (N-Pentane)	0.00	5
N2 (Nitrogen)	0.19	0
CO2 (Carbon dioxide)	0.00	1
Average number of C	1.128	
E_NG _m	2.215	

The CO2 specific gravity in standard state is 1.965E_NG = 1.965 x (average number of C in a mole of NG)

Name of item Description	%_on-line % of production time that the N2O is sent to the decomposition facility
Value in period	100 %
Method of monitoring	Position of limit switches on the valves allowing to by-pass the decomposition facility
Recording frequency	Monthly
Background data	Log sheet record
Calculation method	Based upon the position of the limit switches on the valves by-passing the decomposition facility, the % of time that the production is connected to the facility is continuously counted and used to calculate Q_N2O_by-pass (See Appendix 7).
	At the end of the period, %_on-line for the period is calculated as: %_on-line _y = 1 - (Q_N2O_by-pass _y /(P_AdOH _y x N2O_/AdOH))

Period	Q_N2O_by-pass _y	P_AdOH _y	%_on-line _y
	kg	t	%
July $1^{st} \sim July 31^{st}$	0	12 587	100

Value in period0 kgMethod of monitoring Recording frequency Background dataProduction record and %_on-line DCS monitoring Monthly Production & %_on-line log sheet record The quantity of adipic acid produced while by-passing th destruction facility is first calculated: AdOH_by-pass = P_AdOH x (1 - %_on-line) The quantity of N2O that by-pass the facility is then reco daily.	Name of item Description	Q_N2O_by-pass N2O by-passing the decomposition facility
Method of monitoring Recording frequencyProduction record and %_on-line DCS monitoring MonthlyBackground dataProduction & %_on-line log sheet recordCalculation methodThe quantity of adipic acid produced while by-passing th destruction facility is first calculated: AdOH_by-pass = P_AdOH x (1 - %_on-line) The quantity of N2O that by-pass the facility is then reco daily.	Value in period	0 kg
Q_N2O_by-pass _d = P_AdOH _d x N2O_/AdOH x (1 - %_c line) At the end of the period the quantity of N2O that by-pass the facility is : Q_N2O_by-pass _y = Σ (Q_N2O_by-pass _d)	Method of monitoring Recording frequency Background data Calculation method	Production record and %_on-line DCS monitoring Monthly Production & %_on-line log sheet record The quantity of adipic acid produced while by-passing the destruction facility is first calculated: AdOH_by-pass = P_AdOH x (1 - %_on-line) The quantity of N2O that by-pass the facility is then recorded daily. Q_N2O_by-pass_d = P_AdOH_d x N2O_/AdOH x (1 - %_on line) At the end of the period the quantity of N2O that by-passed the facility is : Q_N2O_by-pass_y = Σ (Q_N2O_by-pass_d)

Period	Q_N2O_by-pass _y
	kg
July $1^{st} \sim$ July 31^{st}	0

Name of item Description	P_AdOH Adipic acid production
Value in period	12 187 t
Method of monitoring Recording frequency Background data	Packaged production and silo inventory Monthly Log sheet record The production of adipic acid over the year ending with the last day of this period is below the capped value defined in the PDD (information available in the Excel Workbook "ER ONSAN", sheet AM, submitted to UNFCCC). The quantity of adipic acid produced during this period can then be fully used as such. The Executive Board has confirmed on EB36 the application of a yearly Adipic acid production cap as required by the methodologies (issue 10f the Requests for review for the Monitoring Period #9 of 08 Aug 07 - 31 Aug 07).
	Following the request for review for a faulty flow measurement of the waste gases Q_GE on July 4 th during 4 hours, the full 400t adipic production of that day is removed from the adipic acid production of the month (12 587 tons). The adipic acid production used for the calculation of the baseline emissions will be taken as 12 187t.

Month - year	Adipic acid production t
July 1 st ~ July 31 st	12 187

<u>Appendix 9</u>

Name of item Description	N2O_AdOH N2O emission factor for adipic acid production	
Value in period	0.270 kg N2O/ kg AdOH	
Method of monitoring	Adipic acid production, nitric acid consumption and physical losses	
Recording frequency	Yearly	
Background data	Log sheet records	
Calculation method	Nitric acid physical losses (HNO3_physical) in the aqueous waste, the off gases, the adipic acid and the by-product are monitored.	
	Those losses are deducted from the nitric acid consumption, (HNO3_consumption) to get the chemical consumption, (HNO3_chemical).	
	The N2O emission factor is then calculated for the period on one year using the last rolling year data: N2O_AdOH = HNO3_chemical / P_AdOH / 63 /2 x 0.96 x 44	
	The detailed calculation is available in the Excel Workbook of this period which is a confidential document communicated to the DOE and to the CDM Executive Board.	
	This calculated value being greater than 0.27 is then capped by the value of KE_N2O = 0.27, as specified in the PDD table D.2.1.3 and required by the methodology AM0021 version 1.	

Year ending	Value calculated	KE_N20	N2O_AdOH
	kg N2O/kg AdOH	kg N2O/kg AdOH	kg N2O/kg AdOH
July 31 st 2008	> 0.270	0.270	0.270

Name of item Description	$\begin{array}{l} Q_N_2O\ reg\ , N_2O_reg\ /\ AdOH\ and\ r_y\\ Evolution\ of\ Korean\ legislation\ that\ may\ require\ limitation\ of\ N_2O\ emissions\ using\ one\ of\ the\ following\ criteria: \\ -\ Q_N_2O\ reg\ :\ allowed\ N_2O\ emissions \\ -\ N_2O_reg\ /\ AdOH\ :\ allowed\ N_2O\ emissions\ per\ kg\ of\ adipic\ acid\ produced \\ -\ r_y\ :\ share\ of\ N_2O\ emissions\ required\ to\ be\ destroyed \end{array}$	
Value in period	not applicable	
Method of monitoring Recording frequency Background data	Survey When relevant South Korean legislation Rhodia follows the evolution of Korean legislation part of its SIMSER+ procedures (System Integrating Management for Safety and Environment). SIMSER+ is covering ISO 14001 standard which requires to follow any updates on environmental regulations. For the monitoring of the new HSE (Hygiene, Safety and Environment) local and national regulations, Rhodia Korea has joined two committees: "Onsan Environment Management Society" and "Korea Environmental Engineers Federation".	

No evolution of legislation since PDD emission

Period	Q_N ₂ O reg	N ₂ O_reg / AdOH	r _y
	kg	kg	%
July 31 st 2008	No limit	No limit	0.

Name of item Description

Value in period

Method of monitoring Recording frequency Background data P_N₂O Market price of N₂O in waste gas

|--|

Market survey Yearly Refers to study Background data Refers to study "N2O market study NITROUS OXIDE Korea" - update September 2007 Beside the very high investment cost in a purification-concentration-liquefaction unit to extract the N₂O from the exhaust flow of the adipic acid plant, neither the process nor the product will get the necessary certifications for the pharmaceutical and food markets. As pharmaceutical and food markets are the 97% of the N₂O usages we can conclude that there is no N₂O market for the N₂O produced as by-product of adipic acid.

Year	P_N ₂ O
2008	0

Name of item Description	$Q_Steam_{p_y}$ Amount of steam produced by the decomposition facility
Value in period	17 554 100 kg
Method of monitoring Recording frequency	Flowmeter Monthly
Background data	Log sheet record
	Following the request for review for a faulty flow measurement of the waste gases Q_GE on July 4 th during 4 hours, the full 574 578 kg steam production of that day is removed from the steam production of the month (18 128 700kg). The adipic acid production used for the calculation of the baseline emissions will be taken as 17 554 100 kg.

Period	Q_Steam_p _y
	kg
July 1 st ~ July 31 st	17 554 100

Name of item Description	E_Steam CO_2 emission factor for steam produced by the facility
Value in period	0.122 kg-CO ₂ /kg of steam
Method of monitoring Recording frequency Background data Calculation method	Supplier data Yearly Monthly external natural gas data from supplier As we cannot get the data from the supplier, the calculation is made according to the monitoring plan. We first calculate the amount of natural gas required to generate steam in Nm3/t of steam in a very efficient boiler QNG_tsteam = Δ H (kcal/t) / (HHV (kcal/Nm3) x η (%)) The HHV data is the yearly average value for the gas supplied by Kyung Dong City Gas Co, Ltd This leads to a conservative value of E_Steam as the steam from the external supplier is produced from coal.
Year ending HHV	△H n QNG_tsteam E_NGy E_Steam

Year ending	HHV kcal/Nm ³	∆H kcal/t	η %	QNG_tsteam Nm3/t of	E_NG _y kg-	E_Steam kg-CO ₂ / kg
		KCal/t	70	steam	CO ₂ /Nm3	of steam
July 30 th 2008	10 428	557 960	97	55.159	2.214	0.122

Name of item Description

Value in period

Method of monitoring Recording frequency Background data Q_Power Electricity consumption by the decomposition facility

179 704 kWh

Power consumption data Monthly Log sheet record / counter

Period	Q_Power kWh
July 1 st ~ July 31 st	179 704

Name of item Description	E_Power CO2 intensity for electric generation		
Value in period	0.597 kg-CO ₂ /kWh		
Method of monitoring	Survey of data publication		
Recording frequency	Yearly		
Background data	KEPCO data make publicly available by the Korean Energy Economics Institute (KEEI) for 2005, 2006 and 2007.		
Calculation method	Calculated using the combined margin (CM) approach according to ACM0002 version 2 in file (Grid_EF_SouthKorea 2005, 2006, 2007 rev1.xls). Calculation has been validated by DOE		

Date (year)	E_Power kg-CO ₂ /kWh
2008	0.597

Name of item Description

Value in period

Method of monitoring Recording frequency Background data Q_Steam_c Amount of steam consumed by the decomposition facility

98 959 kg

Mass flowmeter Monthly Log sheet record

Period	Q_Steam_c
	Kg
July 1 st ~ July 31 st	98 959

Name of item Description	E_Steam_c CO2 intensity for steam consumed in the facility
Value in period	0.134 kg-CO ₂ /kg of steam
Method of monitoring	Calculated from steam supplier data
Recording frequency	Yearly
Background data	Log sheet records / Composition from Kyung Dong City Gas Ltd, the natural gas supplier
Calculation method	 This steam is supplied by existing boilers on site. Steam production and natural gas consumption are monitored. From the monthly natural gas consumption and the monthly value of E_NG, monthly emissions of CO2 for steam production are calculated and cumulated over the year. Q_NG_tsteam in Nm3/t of steam is obtained from the ratio of annual natural gas consumption over the annual steam production. The E_Steam_c is obtained from: E_Steam_c = E_NG_y x Q_NG_tsteam

Year ending	Q_NG_tsteam	E_NG _y	E_Steam_c	
	Nm3/t of steam	kg-CO ₂ /Nm3	kg-CO ₂ / kg of steam	
July 31 st 2008	60.504	2.214	0.134	