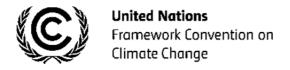
CDM-MP58-A12


Draft Large-scale Methodology

ACM0019: N₂O abatement from nitric acid production

Version 02.0.0

Sectoral scope(s): 05

COVER NOTE

1. Procedural background

- 1. The Executive Board (hereinafter referred to as the Board) of the clean development mechanism (CDM), at its sixty-sixth meeting (paragraph 92 of the meeting report) requested the Methodologies Panel to assess methodologies for N₂0 abatement from nitric acid production, taking into account the potential issue brought to the attention of the Board by the secretariat, including:
 - (a) Clear identification of perverse incentives;
 - (b) Providing analysis of the impact of the incentives in terms of emission reductions;
 - (c) Providing a recommendation to the Board on how to address the issues.
- 2. The Board, at its sixty-ninth meeting (paragraph 82 of the meeting report) considered all the recommendations from the Methodologies Panel related to the methodologies for N₂O emission reduction and, based on the further information provided during the meeting, the Board agreed not to approve the recommendations by the Methodologies Panel. The Board requested the Methodologies Panel to work further on these methodologies and report back for the consideration of the Board at a future meeting.
- 3. The draft revision of the approved methodology "ACM0019: N₂O abatement from nitric acid production" also takes into consideration issues in response to the submission AM_REV_0245: request for revision of project emission calculation of "ACM0019: N₂O abatement from nitric acid production".
- 4. The submission AM_REV_0245 was considered by the Methodologies Panel at its 58th meeting in accordance with the "Procedure for the submission and consideration of requests for revision of approved baseline and monitoring methodologies and tools for large scale CDM project activities" (EB 54, annex 2).

2. Purpose

5. The purpose of the proposed revision is to improve existing regulations.

3. Key issues and proposed solutions

- 6. The draft revision:
 - (a) Provides default emission factors that can be adopted at the renewal of the crediting period for project activities associated with currently using AM0028 and AM0034 for nitric acid production project activities;
 - (b) Allows project participants to assume reductions as zero whenever the project emissions exceed the baseline emission benchmark;

(c) Incorporates provisions from "AM0034: Catalytic reduction of N_2O inside the ammonia burner of nitric acid plants" and "AM0051: Secondary catalytic N_2O destruction".

4. Impacts

- 7. The revision of the methodology, if approved, will help project proponents to accurately calculate the emission reductions.
- 8. The methodology was approved at EB 61 in June 2011 and no revision has been done so far. So far seven projects and no PoA have been registered applying this methodology. Twenty one projects and no PoAs are currently listed as under validation applying this methodology.

5. Proposed work and timelines

9. The proposed draft revision of the methodology is recommended by the Methodologies Panel to be considered by the Board at its seventieth meeting. No further work is envisaged.

6. Recommendations to the Board

10. The Methodologies Panel recommends that the Board adopts the draft revised methodology.

TAE	BLE O	F CONT	TENTS	Page
1.	INTF	RODUCT	TION	5
2.	sco	PE, AP	PLICABILITY, AND ENTRY INTO FORCE	5
	2.1.	Scope		5
	2.2.		red approach from paragraph 48 of the CDM modalities	5
	2.3.	Applica	ability	5
	2.4.	Entry i	into force	5
3.	REF	ERENC	ES AND ANY OTHER INFORMATION	6
4.	DEF	INITION	IS	6
5.	BASELINE METHODOLOGY			
	5.1.		ication of the baseline scenario and demonstration of onality	6
	5.2.	Projec	t boundary	7
	5.3.	5.3. Baseline emissions		9
		<u>5.3.1.</u>	Case 1: For nitric acid plants that have used AM0028 or AM0034 in the first crediting period	9
		<mark>5.3.2.</mark>	Case 2: For other nitric acid plants	10
		<mark>5.3.3.</mark>	Calculation of $h_{r,y}$	11
	5.4.	Projec	et emissions	11
		5.4.1.	Project emissions of N_2O from the project plant ($PE_{N2O,y}$)	12
		5.4.2.	Determination of F _{N2O,tail gas,h}	13
		5.4.3.	Project emissions from the operation of the tertiary N_2O abatement facility ($PE_{CO2,tertiary,y}$)	14
	5.5.	Leaka	ge	14
	5.6.	Emissi	ion reductions	14
	5.7.	Data a	and parameters not monitored	15
6.	MON	IITORIN	IG METHODOLOGY	18
	6.1.	Archiva	al of monitoring information	18
	6.2.	Data a	and parameters monitored	19

1. Introduction

11. The following table describes the key elements of the methodology:

Table 1. Methodology key elements

Typical projects	Project activities that introduce N ₂ O abatement measures in nitric acid plants can use this methodology
Type of GHG emissions mitigation action	(a) Destruction of GHG. Destruction of N₂O emissions through abatement measures

2. Scope, applicability, and entry into force

2.1. Scope

12. This methodology applies to project activities that introduce N₂O abatement measures in nitric acid plants.

2.2. Selected approach from paragraph 48 of the CDM modalities and procedures

13. "Existing actual or historical emissions, as applicable".

2.3. Applicability

- 14. The methodology is applicable under the following conditions:
 - (a) In the case that the nitric acid plant started commercial operation before the implementation of the CDM project activity, the project participants shall demonstrate that there was no secondary or tertiary N₂O abatement technology installed in the respective nitric acid plant;
 - (b) Continuous real-time measurements of the N₂O concentration and the total gas volume flow can be carried out in the tail gas stream after the abatement of N₂O emissions throughout the crediting period of the project activity;
 - (c) No law or regulation which mandates the complete or partial destruction of N_2O from nitric acid plants exists in the host country where the CDM project activity is implemented.
- 15. In addition, the applicability conditions included in the tools referred to above apply.

2.4. Entry into force

16. The date of entry into force of the revision is the date of the publication of the EB 70 meeting report on 23 November 2012.

3. References and any other information

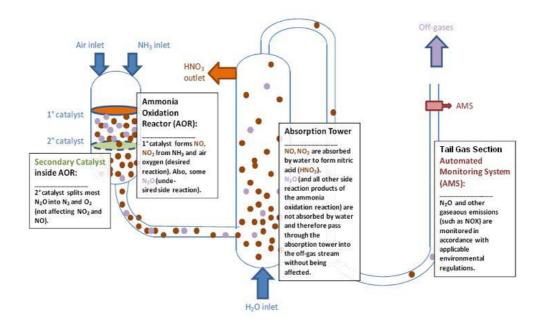
- 17. This consolidated baseline and monitoring methodology is based on elements from the following approved baseline and monitoring methodologies and proposed new methodologies:
 - (a) "NM0339: N₂O abatement in New Capacity nitric acid plants prepared by N.serve Environmental Services GmbH:"
 - (b) "NM0340: N₂O abatement in New Nitric Acid Plants prepared by Carbon Climate Protection GmbH and Enaex S.A.;"
 - (c) "AM0028: Catalytic N₂O destruction in the tail gas of Nitric Acid or Caprolactam Production Plants, Version 05;"
 - (d) "AM0034: Catalytic reduction of N₂O inside the ammonia burner of nitric acid plants. Version 04."
- 18. This methodology also refers to the latest approved versions of the following tools:
 - (a) "Tool to determine the mass flow of a greenhouse gas in a gaseous stream;"
 - (b) "Tool to calculate project or leakage CO₂ emissions from fossil fuel combustion."
- 19. For more information regarding the proposed new methodologies and the tools as well as their consideration by the Executive Board (hereinafter referred to as the Board) of the clean development mechanism (CDM) Executive Board please refer to http://cdm.unfccc.int/goto/MPappmeth.
- 20. Methodology proposal "Standardized N₂O baselines for new nitric acid plants" prepared by N.serve Environmental Services GmbH.

4. Definitions

- 21. The definitions contained in the Glossary of CDM terms shall apply.
- 22. For the purpose of this methodology, the following definitions apply:
 - (a) Secondary N_2O abatement Refers to the installation of a catalyst inside the ammonia burner unit with the sole purpose of removing N_2O emissions from the stream;
 - (b) **Tertiary N₂O abatement** Refers to the installation of an abatement system in the tail-gas leaving the absorption column of a nitric acid plant to destroy the N₂O generated in the ammonia burner unit.

5. Baseline methodology

5.1. Identification of the baseline scenario and demonstration of additionality


23. In the absence of regulations requiring the abatement of N₂O emissions, the operator of the nitric acid plant has no economic incentives to take any N₂O abatement measures because this entails capital and operating costs but no financial benefits. Therefore, the

CDM project activity is considered <u>additional</u> and the baseline scenario is that the N_2O is emitted to the atmosphere with no N_2O abatement measure being implemented.

5.2. Project boundary

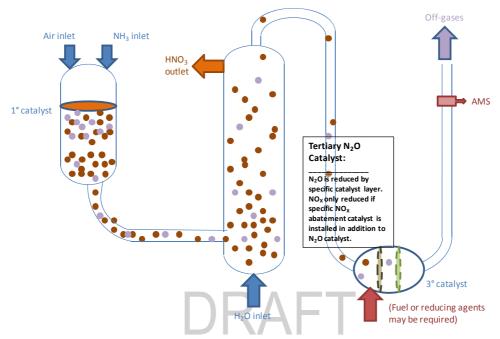

- 24. The **spatial extent** of the project boundary encompasses the facility and equipment for the nitric acid production process from the inlet of the ammonia burner to the outlet of the tail gas section.
- 25. If the project activity introduces only secondary and no tertiary N_2O abatement, then the only gas to be included as project emissions is the N_2O that is not destroyed and is still present in the tail gas stream of the plant. The situation using a secondary abatement technology is illustrated below in Figure 1.

Figure 1: Project boundary if the project activity includes consists of the introduction of a secondary N_2O abatement measure (simplified standard nitric plant layout displaying the location of the N_2O abatement catalyst, process sources of N_2O and the sampling point location for the Automated Monitoring System (AMS))

26. If the project activity introduces tertiary N_2O abatement, then any remaining N_2O emissions from the project plant and CO_2 emissions arising from the operation of the tertiary N_2O abatement system are included as project emissions in the project boundary. The situation using a tertiary N_2O abatement technology is illustrated below in Figure 2.

Figure 2 Project boundary if the project activity includes consists of the introduction of a tertiary N_2O abatement measure (simplified standard nitric plant layout displaying the location of the N_2O abatement catalyst, process sources of N_2O and the sampling point location for the Automated Monitoring System (AMS))

27. The greenhouse gases included in or excluded from the project boundary are shown in Table 2.

Table 2. Emission sources included in or excluded from the project boundary

	Source	Gas	Included	Justification/Explanation
ЭL		CO ₂	No	The project activity has no influence
Baseline	NH₃ oxidation at the primary catalyst gauze	CH₄	No	on these types of emissions, if present
ä		N ₂ O	Yes	Included, main emission source
		CO ₂	No	The project activity has no influence
Project activity	NH₃ oxidation at the primary catalyst gauze	CH₄	No	on these types of emissions, if present
		N ₂ O	Yes	Included, main emission source
	Operation of a tertiary N₂O Abatement facility	CO ₂	Yes	In some cases, fossil fuels are used as reducing agent and/or for decomposing the tail gas as part of a tertiary N ₂ O abatement facility. In this case the fossil fuels are mainly converted to CO ₂ . CO ₂ emissions
		CH₄	No	arising from the production of ammonia are assumed to be small and not taken into account
		N ₂ O	Yes	Included

5.3. Baseline emissions

GWP_{N20}

28. Baseline emissions are calculated as follows:

Global Warming Potential of N2O valid for the commitment period

Determination of the baseline N2O emission factor (EFBL,N2O,n)

5.3.1. Case 1: For nitric acid plants that have used AM0028 or AM0034 in the first crediting period

29. For nitric acid plants that have used AM0028 or AM0034 in the first crediting period and apply this methodology in their second or third crediting period, the baseline emissions are calculated as follows:

$$BE_{y} = {\binom{\min\{P_{production,y}; P_{product,max}\} \times EF_{existing,y} + }{\max\{P_{production,y} - P_{product,max}; 0\} \times EF_{new,y}}} \times \frac{(h_{y} - h_{r,y})}{h_{y}} \times GWP_{N2O} \times 10^{-3}}$$
 Equation (1)

Where:

 BE_{y} = Baseline emissions in year y (t CO_2e)

 $P_{product,max}$ = Design capacity (t HNO₃)

 $P_{production,y}$ = Production of nitric acid in year y (t HNO₃)

 $EF_{existing,y}$ = Default N₂O emission factor for nitric acid plants that have used AM0028 or AM0034 in the first crediting period in year y

(kg N₂O/t HNO₃)

 $EF_{new,y}$ = Baseline N₂O emission factor for nitric acid production in year y

(kg N₂O/t HNO₃)

 GWP_{N2O} = Global Warming Potential of N_2O valid for the commitment period

 h_y = Number of hours in year y during which the plant was in operation

<u>(h)</u>

 $h_{r,y}$ = Number of hours (h) in year y where:

 For secondary N₂O abatement. Abatement system was not installed, underperforming or failed;

 For tertiary N₂O abatement. The abatement system is bypassed, underperforming or failed

5.3.2. Case 2: For other nitric acid plants

30. Baseline emissions are calculated as follows:

$$BE_y = P_{production,y} \times EF_{new,y} \times \frac{(h_y - h_{r,y})}{h_y} \times GWP_{N20} \times 10^{-3}$$
 Equation (2)

Where:

 BE_y = Baseline emissions in year y (t CO_2e)

 $P_{production,y}$ = Production of nitric acid in year y (t HNO₃)

 $EF_{new,y}$ = Baseline N₂O emission factor for nitric acid production in year y

(kg N₂O/t HNO₃)

GWP_{N2O} = Global Warming Potential of N₂O valid for the commitment period

h_y = Number of hours in year y during which the plant was in operation (h)

 $h_{r,y}$

Number of hours (h) in year y where:

- For secondary N₂O abatement. Abatement system was not installed, underperforming or failed;
- For tertiary N₂O abatement. The abatement system is bypassed, underperforming or failed

5.3.3. Calculation of $h_{r,v}$

An abatement system is deemed to be bypassed, not working, underperform or failed in the hour *h* in year *y* if:

5.3.3.1. Case 1: For nitric acid plants that have used AM0028 or AM0034 in the first crediting period

 $F_{N2O,tail\ gas,h} > EF_{existing\ y} \times P_{NA,h}$

Equation (3)

Where:

 $P_{NA,h}$ = Nitric acid produced in the hour h (t HNO₃)

 $EF_{existing y}$ = Default N₂O emission factor for nitric acid plants that have used AM0028 or AM0034 in the first crediting period in year y

AM0028 or AM0034 in the first crediting period in year (kg N_2 O/t HNO₃)

 $F_{N2O,tail\ gas,h}$ = Mass flow of N₂O in the gaseous stream of the tail gas in the hour h (kg N₂O/h)

5.3.3.2. Case 2: For other nitric acid plants

 $\overline{F_{N2O,tail\ gas,h}} > \overline{EF_{New,y}} \times P_{NA,h}$

Equation (4)

Where:

 P_{NAh} = Nitric acid produced in the hour h (t HNO₃)

 $EF_{existing,y}$ = Default N₂O emission factor for nitric acid plants that have used

AM0028 or AM0034 in the first crediting period in year y

(kg N₂O/t HNO₃)

 $F_{N2O,tail\ gas,h}$ = Mass flow of N_2O in the gaseous stream of the tail gas in the hour h (kg N_2O/h)

5.4. Project emissions

- 32. Project emissions include emissions of N_2O which have not been destroyed by the project activity and, in case of the installation of a tertiary N_2O abatement facility, CO_2 emissions resulting from the operation of the N_2O abatement facility.
- 33. Project emissions are calculated as follows:

$$PE_{y} = PE_{N2O,y} + PE_{CO2,tertiary,y}$$

Equation (5)

Where:

 PE_{ν} = Project emissions in year y (t CO₂e)

 $PE_{N2Q,y}$ = Project emissions of N₂O from the project plant in year y (t CO₂e)

 $PE_{CO2,tertiary,y}$ = Project emissions of CO₂ from the operation of the tertiary N₂O abatement facility in year y (t CO₂)

5.4.1. Project emissions of N_2O from the project plant ($PE_{N2O,y}$)

- 34. The amount of N_2O emissions from the project activity include two emission sources are the emissions from the N_2O contained in the tail gas stream of the plant which is released to the atmosphere; and
 - (a) The N₂O released to the atmosphere due to unusual reasons:
 - (i) In the case of secondary N₂O abatement: the N₂O contained in the tail gas stream of the plant when a secondary abatement facility underperforms or it is not installed inside the ammonia burner;
 - (ii) In the case of tertiary N₂O abatement: the N₂O contained in any by-pass streams to the tertiary N₂O abatement facility. In some situations, the gas stream from the nitric acid plant may not be sent to the tertiary N₂O abatement facility but may be directly vented to the atmosphere through a by-pass.
- 35. Accordingly, $PE_{N2O,v}$ is determined as follows:

$$PE_{N2O,n} - (Q_{N2O,tail\ gas,n} + Q_{N2O,by-pass,n}) \times GWP_{N2O,by-pass,n}$$

$$PE_{N2O,y} = \sum_{1}^{h_y - h_{r,y}} F_{N2O,tail\ gas,h} \times GWP_{N20} \times 10^{-3}$$

Equation (6)

Where:

 $PE_{N2O,v}$ = Project emissions of N_2O from the project plant in year y (t CO_2e)

Q_{N2O,tail gas,n} = Amount of N₂O released through the tail gas of the project plant to the atmosphere in monitoring period *n* (t N₂O)

tne atmosphere in monitoring period *n* (t N₂⊖)

Q_{N2O,by-pass,n} = Amount of N₂O released to the atmosphere due to unusual reasons in monitoring period *n* (t N₂O)

 GWP_{N20} = Global warming potential of N₂O valid for the commitment period

 $F_{N2O,tail\ gas,h}$ = Mass flow of N_2O in the gaseous stream of the tail gas in the hour h (kg N_2O/h)

h_y = Number of hours in year y during which the plant was in operation (h)

 $h_{r,v}$ = Number of hours (h) in year y where:

- For secondary N₂O abatement. Abatement system was not installed, underperforming or failed;
- For tertiary N₂O abatement. The abatement system is bypassed, underperforming or failed

P_{production,y} = Production of nitric acid in year y (t HNO₃)

EF_{project,y} = Project N2O emission factor for nitric acid production in the year y
(ka N₂O / t HNO3)

5.4.2. Determination of $F_{N2O,tail\ gas,h}$

- 36. The amount of N_2O emissions from the tail gas stream of the project plant shall be determined using the "Tool to determine the mass flow of a greenhouse gas in a gaseous stream".
- 37. In applying the tool, the following provisions apply:
 - (a) Throughout the crediting periods of the project activity, the N₂O concentration and volume or mass flow of the tail gas are to be monitored continuously. The monitoring system is to be installed and maintained throughout the crediting period based on the European Norm 14181 (2004), or any more recent update of that standard:
 - (b) The monitoring system should provide separate hourly average values for the N₂O concentration and the volume or mass flow of the tail gas based on two seconds (or shorter) interval readings that are recorded and stored electronically. These N₂O data sets shall be identified by means of a unique time/date key indicating when exactly the values were observed;
 - (c) The correction factors derived from the calibration curve of the QAL2 audit for the monitoring components as determined during the QAL2-test in accordance with EN14181 must be applied to both the N₂O concentration and the volume or mass flow of the tail gas. This can either be applied automatically to the raw data recorded by the data storage system at the plant or it can be applied to the calculated hourly averages as part of the calculation of project emissions;
 - (d) If data for either the N₂O concentration or the volume or mass flow of the tail gas are not available for more than 1/3 of any hour while the plant was in operation, the value for that hour shall be replaced with the maximum value of N₂O concentration or volume or mass flow of the tail gas observed during the monitoring period. If data for neither the N₂O concentration nor the volume or mass flow of the tail gas are available for more than 1/3 of any hour while the plant was in operation, the maximum value of mass flow of N₂O calculated during the monitoring period shall be applied to any such hour. Values observed during five operating hours before and after a plant start-up and shut-down shall not be used for the determination of the maximum values;
 - (e) In the case that the N₂O concentration and the volume or mass flow of the tail gas and by-pass are automatically converted to normal conditions by the AMS

during the monitoring process, the parameters P_t and T_t do not need to be monitored except, if applicable, for the purpose of determining the moisture content in the gaseous stream.

5.4.3. Project emissions from the operation of the tertiary N_2O abatement facility $(PE_{CO2,tertiary,y})$

- 38. This emission source only needs to be estimated if a tertiary N_2O abatement facility is installed under the project activity and if fossil fuels are used to operate the facility or reheat the gas after the facility.
- 39. The emissions related to the operation of the N_2O destruction facility include only on-site emissions due to the fossil fuel use as input to the N_2O destruction facility:

$$PE_{CO2,tertiarv,v} = PE_{FF,v}$$
 Equation (7)

Where:

 $PE_{CO2,tertiary,y}$ = Project emissions of CO₂ from the operation of the tertiary N₂O abatement facility in year y (t CO₂)

 $PE_{FF,y}$ = Project emissions related to fossil fuel input to the destruction facility and/or re-heater in year y (t CO₂)

- 40. Project proponents shall use the latest version of the "Tool to calculate project or leakage CO₂ emissions from fossil fuel comb*ustion*" to calculate the project emissions related to fossil fuels used in year *y*.
- 41. Specific guidance on the use of the tool:
 - (a) The parameter $PE_{FC,j,y}$ used in the "Tool to calculate project or leakage CO_2 emissions from fossil fuel combustion" corresponds to the parameter $PE_{FF,y}$ in this methodology; and
 - (b) The element process j in the tool corresponds to the consumption of fossil fuels for the operation of the tertiary N_2O abatement facility and/or the re-heating of the tail gas.

5.5. Leakage

42. Any leakage emissions sources are deemed to be negligible.

5.6. Emission reductions

43. Emission reductions are calculated as follows:

$$ER_{v} = BE_{v} - PE_{v}$$
 Equation (8)

Where:

 ER_y = Emission reductions in year y (t CO_2e) BE_y = Baseline emissions in year y (t CO_2e) PE_y = Project emissions in year y (t CO_2e)

5.7. Data and parameters not monitored

44. In addition to the parameters listed in section 5.7, the provisions on data and parameters not monitored in the tools referred to in this methodology apply.

Data / Parameter table 1.

Data / Parameter:	Operating pressure
Data unit:	KPa Company of the Co
Description:	Operating pressure of the ammonia burner
Source of data:	Manufacturer specifications
<mark>Measurement</mark>	None
procedures (if any):	
Monitoring	-
frequency:	
QA/QC procedures:	The parameter is used to determine whether the nitric acid
	plant operates at a low, medium or high pressure
Any comment:	- UNAL

Data / Parameter table 2.

Data / Parameter:	EF _{existing} , y
Data unit:	kg N ₂ O/t HNO ₃
Description:	Default N ₂ O emission factor (for nitric acid plants that have used AM0028 or AM0034 in the first crediting period) in the calendar year <i>y</i> of the monitoring period <i>y</i> (related to 100% pure acid)

Source of data:	This default N ₂ O baseline emission factor will vary every year. In year 2012 the emission factors will be 4.4; 5.9; and 8.2 kg N ₂ O/t HNO ₃ for low, medium and high pressure ammonia burners and they will decrease every year by 0.2 kg N ₂ O / t HNO ₃ until they reach a value of 2.5 or 2.4. After reaching the values of 2.5 or 2.4 the emission factor will remain constant over time:				
	Year	Low pressure (0 – 200 kPa)	Medium pressure (200 – 600kPa)	High pressure (Over 600 kPa)	
	<mark>2012</mark>	<mark>4.4</mark>	<mark>5.9</mark>	<mark>8.2</mark>	
	<mark>2013</mark>	<mark>4.2</mark>	<mark>5.7</mark>	<mark>8,0</mark>	
	<mark>2014</mark>	<mark>4.0</mark>	<mark>5.5</mark>	<mark>7.8</mark>	
	<mark>2015</mark>	<mark>3.8</mark>	<mark>5.3</mark>	<mark>7.6</mark>	
	<mark>2016</mark>	<mark>3.6</mark>	<mark>5.1</mark>	<mark>7.4</mark>	
	<mark>2017</mark>	3.4	<mark>4.9</mark>	<mark>7.2</mark>	
	<mark>2018</mark>	<mark>3.2</mark>	<mark>4.7</mark>	<mark>7.0</mark>	
	<mark>2019</mark>	3.0	<mark>4.5</mark>	<mark>6.8</mark>	
	<mark>2020</mark>	<mark>2.8</mark>	<mark>4.3</mark>	<mark>6.6</mark>	
	<mark>2021</mark>	<mark>2.6</mark>	<mark>4.1</mark>	<mark>6.4</mark>	
	<mark>2022</mark>	_ <mark>2.4</mark>	<mark>3.9</mark>	<mark>6.2</mark>	
	2023	2.4	<mark>3.7</mark>	<mark>6.0</mark>	
	<mark>2024</mark>	<mark>2.4</mark>	<mark>3.5</mark>	<mark>5.8</mark>	
	<mark>2025</mark>	<mark>2.4</mark>	<mark>3.3</mark>	<mark>5.6</mark>	
	<mark>2026</mark>	<mark>2.4</mark>	<mark>3.1</mark>	<mark>5.4</mark>	
	<mark>2027</mark>	<mark>2.4</mark>	<mark>2.9</mark>	<mark>5.2</mark>	
	<mark>2028</mark>	<mark>2.4</mark>	<mark>2.7</mark>	<mark>5.0</mark>	
	2029	<mark>2.4</mark>	<mark>2.5</mark>	<mark>4.8</mark>	
	<mark>2030</mark>	<mark>2.4</mark>	<mark>2.5</mark>	<mark>4.6</mark>	
Measurement procedures (if any):	None				
Monitoring frequency:	-				
QA/QC procedures:	-				
Any comment:	The decrease in time is to reflect t				er

Data / Parameter table 3.

Data / Parameter:	EF _{new, y} EF _{default, y}			
Data unit:	kg N ₂ O/t HNO ₃			
Description:	Default N ₂ O baseline emissions factor in the calendar year <i>y</i> of the monitoring period <i>y</i> (related to 100% pure acid)			
Source of data:	The default N ₂ O baseline emiss In year 2005 the emission facto decrease every year until it read year 2020. The value of 2.5 will provided in the following table: Year	r will be 5.1 and then it will ches a final value of 2.5 in the		
	2005	, ,		
	2005	5.10 4.90		
	2007	4.70		
	2007	4.60		
	2009	4.40		
	2010	4.20		
	2011	4.10		
	2012	3.90		
	2013	3.70		
	2014	3.50		
	2015	3.40		
	2016	3.20		
	2017	3.00		
	2018	2.80		
	2019	2.70		
	2020	2.50		
	2021	2.50		
	2022	2.50		
	2023	2.50		
	Year n	2.50		
Measurement procedures (if any):				
Any comment:	The decrease in the value for the time is to reflect the technologic			

Data / Parameter table 4.

Data / Parameter:	P _{product,max}
Data unit:	t Product
Description:	Design capacity of nitric acid production during the first crediting period
Source of data:	Project operator and/or technology provider
Measurement procedures (if any):	-
Monitoring frequency:	-
QA/QC procedures:	-
Any comment:	This parameter is only for project activities applying case 1

Data / Parameter table 5.

Data / Parameter:	GWP_{N2O}
Data unit:	t CO ₂ e/t N ₂ O
Description:	Global warming potential of N ₂ O valid for the commitment period
Source of data:	Relevant decisions by the CMP
Measurement procedures (if any):	None RAFT
Monitoring frequency:	
QA/QC procedures:	-
Any comment:	-

6. Monitoring methodology

6.1. Archival of monitoring information

- 45. All data collected as part of monitoring should be archived electronically and be kept at least for two years after the end of the last crediting period. One hundred per cent of the data should be monitored if not indicated otherwise in the tables below. All measurements should be conducted with calibrated measurement equipment according to relevant industry standards.
- 46. In addition, the monitoring provisions in the tools referred to in this methodology apply.

6.2. Data and parameters monitored

Data / Parameter table 6.

Data / Parameter:	P _{production, y}
Data unit:	t HNO₃
Description:	Nitric acid produced in year y
Source of data:	Measurements by project participants and production reports
Measurement	
procedures (if any):	
Monitoring (Every monitoring period
frequency:	
QA/QC procedures:	Measurement devices such as weight scales shall follow
	QA/QC supplier recommendations
Any comment:	-

Data / Parameter table 7.

Data / Parameter:	A _A h _y
Data unit:	Н
Description:	Number of hours of operation in year <i>y</i>
Source of data:	Measured
Measurement procedures (if any):	- DRAFT
Monitoring frequency:	Every monitoring period
QA/QC procedures:	-
Any comment:	Records to be maintained during project's lifetime

Data / Parameter table 8.

Data / Parameter:	<mark>ե_{r,n} h_{r,y}</mark>
Data unit:	h
Description:	Number of hours (h) in year y where:
	 For secondary N₂O abatement. Abatement system was not installed, underperforming or failed;
	 For tertiary N₂O abatement. The abatement system is by- passed, underperforming or failed
Source of data:	Measured
Measurement procedures (if any):	-
Monitoring frequency:	Every monitoring period

QA/QC procedures:	-
Any comment:	Records to be maintained during project's lifetime

Data / Parameter table 9.

Data / Parameter:	∓ _{released,n} -∓ _{open,n}
Data unit:	hours %
Description:	Number of hours where the N ₂ O was released to the atmosphere for unusual reason in monitoring period <i>n</i>
	Fraction of time in monitoring period n during which the bypass valve on the line feeding the tertiary N ₂ O abatement facility was open to vent the gas directly to the atmosphere
Source of data:	Measured
Measurement procedures (if any):	-
Monitoring frequency:	Every monitoring period
QA/QC procedures:	
Any comment:	T _{released,n} cannot occur for more than 48 hours continuously and it only can occur for a maximum of 168 hours per year

Document information

Version	Date	Description
02.0.0	05 November 2012	MP 58, Annex 12
		 Provide default emission factors that can be adopted at the renewal of the crediting period for projects currently using AM0028 and AM0034 for nitric acid production project activities;
		 Allow project participants to assume reductions as zero whenever the project emissions exceed the baseline emission benchmark;
		 Incorporate provisions from AM0034 "Catalytic reduction of N₂O inside the ammonia burner of nitric acid plants" and AM0051 "Secondary catalytic N₂C destruction.
01.0.0	EB 61, Annex 4 03 June 2011	Initial adoption.

Decision Class: Regulatory Document Type: Standard Business Function: Methodology

Keywords: nitrous oxide, abatement systems