

UNFCCC/CCNUCC

1	Draft revision to the methodological tool
2	"Project emissions from flaring"
3	(Version <mark>02.0.0</mark>)
4	I. DEFINITIONS, SCOPE, APPLICABILITY AND PARAMETERS
5	Definitions
6	For the purpose of this tool, the following definitions apply:
7 8 9	Enclosed flare. Devices where the residual gas is burned in a vertical cylindrical or rectilinear enclosure that includes a burning system and a damper where air for the combustion reaction is admitted.
10 11	Exhaust gas (EG). Gas emitted from the flare, following the flaring of residual gas as part of the project activity.
12 13 14	Flare efficiency. Methane destruction efficiency of the flare, defined as the ratio between the mass flow rate of methane in the exhaust gas and the mass flow rate of methane in residual gas to be flared (both referred to in dry basis and reference conditions).
15 16	Manufacturer. The original manufacturer of the flare, or their authorized agent for undertaking the manufacture of the flare.
17 18 19	Flare Specification. The flare manufacturer's design specification of the flare, which include: the minimum and maximum flow rate and/or heat flux; minimum and maximum operating temperature; and, location(s) of temperature sensors.
20 21 22	Open flare. Device where the residual gas is burned in an open air tip with or without any auxiliary fluid assistance or an enclosed flare, whose flame enclosure is less than 2 times the diameter of the enclosure.
23 24 25	Maintenance schedule. The flare manufacturer's specification for the schedule of routine maintenance that is required to maintain the flare in good working order. This is typically expressed as the desirable time between maintenance events.
26 27	Reference conditions. Reference conditions are defined as 0°C (273.15 K, 32°F) and 1 atm (101.325 kN/m2, 101.325 kPa, 14.69 psia, 29.92 in Hg, 760 torr).
28	Residual gas (RG). Gas containing methane that is to be flared as part of the project activity.
29 30	Residual gas component. Chemical species composing the residual gas (CH ₄ , CO, CO ₂ , O ₂ , H ₂ , H ₂ S, NH ₃ , N ₂).
31 32	Low height flare . The flame enclosure of a flare has a height between 10 and 2 times the diameter of the enclosure.
33 34 35	Auxiliary fuel . Additional fuel added to the residual gas to increase the calorific value to the point where the mixture will sustain continuous combustion. Auxiliary fuel where needed is normally propane supplied from cylinders of gas or methane from a gas main.

36 Scope and applicability

37 This tool provides procedures to calculate project emissions from flaring of a residual gas.

- The tool is applicable to enclosed or open flares and project participants should document in the CDM-PDD the type of flare used in the project activity.
- by the CDM-1 DD the type of flate used in the project derivity.
- 40 This tool is applicable to flaring flammable greenhouse gases where methane is the
- 41 flammable gas with the higher concentration, and that the source of the gas is coal mine
- 42 methane or biogenic (e.g. biogas, landfill gas or wastewater treatment gas). The tool is not
- 43 applicable to the use of auxiliary fuels and therefore the residual gas must have sufficient
- 44 flammable gas present to sustain combustion. For the case of an enclosed flare, there shall be
- 45 operating specifications provided by the manufacturer of the flare.
- 46 This methodology refers to the latest approved version of the "Tool to determine the mass
- 47 flow of a greenhouse gas in a gaseous stream". The applicability conditions of this tool also
- 48 apply.

49 **Parameters**

50 This tool provides procedures to determine the following parameter:

Parameter	SI Unit	Description
PE _{flare,y}	t CO ₂ e	Project emissions from flaring of the residual gas in year y

51 II. BASELINE METHODOLOGY PROCEDURE

- 52 The calculation procedure in this tool determines the project emissions from flaring the
- residual gas ($PE_{flare,y}$) based on the flare efficiency ($\eta_{flare,m}$) and the flow rate of methane to the

flare ($F_{CH4,RG,m}$). The flare efficiency is determined for each minute *m* of year *y* based either

- on monitored data or default values.
- 56 The project emissions calculation procedure is given in the following steps:
- 57 STEP 1: Determination of methane mass flow rate of the residual gas;
- 58 STEP 2: Determination of the flare efficiency;
- 59 STEP 3: Calculate of project emissions from flaring.
- 60 Step 1: Determination of methane mass flow rate in the residual gas on a dry basis
- 61 The "Tool to determine the mass flow of a greenhouse gas in a gaseous stream" shall be used 62 to determine the following parameter:
- 63

Parameter	SI Unit	Description
F _{CH4,m}	kg / h	Mass flow of methane in the residual gaseous stream in the
		minute <i>m</i>

- 64 The following requirements apply:
- The gaseous stream tool shall be applied to the residual gas;
- The flow of the gaseous stream shall be measured continuously;
- CH₄ is the greenhouse gas i for which the mass flow should be determined;
- The simplification offered for calculating the molecular mass of the gaseous stream is valid (equations 3 and 17 in the tool); and
- The time interval *t* for which mass flow should be calculated is every minute *m*.

F_{CH4,m}, which is measured as the mass flow rate (kg / h) during minute *m*, shall then be used to determine mass of methane in kilograms fed to the flare in minute *m* ($F_{CH4,RG,m}$).

73 Step 2: Determination of flare efficiency

- 74 The flare efficiency depends on the efficiency of combustion in the flare and the time that the
- 75 flare is operating. For determining the efficiency of combustion of enclosed flares there is the
- 76 option to apply a default value or determine the efficiency based on monitored data. For open
- 77 flares a default value must be applied. The time the flare is operating is determined by
- 78 monitoring the flame using a flame detector, and for the case of enclosed flares, the additional
- 79 monitoring that manufacturer's specifications for operating conditions are met.

80 **Open flare**

81 In case of open flares, the flare efficiency in the minute $m(\eta_{flare,m})$ is 50% when the flame is 82 detected in the minute m (Flame_m), otherwise $\eta_{flare,m}$ is 0%.

83 Enclosed flare

- 84 In case of enclosed flares, project participants may choose between the following two options
- to determine the flare efficiency for minute $m(\eta_{flare,m})$, and shall document in the CDM-PDD,
- 86 which option is selected. Option A is applying a default value for flare efficiency, provided

that the flare is operating correctly, and Option B is to measure the flare efficiency.

For enclosed flares that are defined as low height flares, then the flare efficiency in the minute $m (\eta_{flare,m})$ shall be discounted by 10%. For example, the default value applied would be 80%, rather than 90%, and if for example the measured value was 99%, then the value would be discounted to 89%.

92 Option A: Default value

- The flare efficiency for the minute $m(\eta_{flare,m})$ is 90% when the following two conditions are met to demonstrate that the flare is operating:
- 95 (1) The temperature of the flare $(T_{EG,m})$ and the flow rate of residual gas to the flare 96 $(F_{RG,m})$ is within manufacturer's specification $(SPEC_{flare})$ in minute *m*; and
- 97 (2) The flame is detected in minute m (Flame_m).
- 98 Otherwise $\eta_{flare,m}$ is 0%.

99 **Option B:** Measured flare efficiency

- 100 The flare efficiency in the minute *m* is a measured value ($\eta_{flare,m} = \eta_{flare,calc,m}$) when the 101 following three conditions are met to demonstrate that the flare is operating:
- 102 (1) The temperature of the flare $(T_{EG,m})$ and the flow rate of residual gas to the flare 103 $(F_{RG,m})$ is within manufacturer's specification (SPEC_{flare}) in minute *m*;
- 104 (2) The flame is detected in minute m (Flame_m); and

105(3)The time between the completion of the maintenance event to minute m106(Maintenance_y) and the minute m, does not exceed the manufacturer's107maintenance schedule (SPEC_{flare}).

- 108 Otherwise $\eta_{flare,m}$ is 0%.
- 109 The project participant may choose to determine $\eta_{flare,calc,m}$ using either option B.1 or option
- B.2. Option B.1 is to have the measurement conducted by an accredited entity on a biannual
 basis and option B.2 is to measure the flare efficiency each minute.

112 **Option B.1: Biannual measurement of flare efficiency**

113 The calculated flare efficiency $\eta_{\text{flare,calc,m}}$ is determined as the average of two measurements of 114 flare efficiency made in year y ($\eta_{\text{flare,calc,y}}$) as follows:

115
$$\eta_{flare,calc,y} = 1 - \frac{1}{2} \sum_{t=1}^{2} \left(\frac{F_{CH4,EG,t}}{F_{CH4,RG,t}} \right)$$
 (1)

116 Where:

flare,calc,y	=	Flare efficiency in the year y
$F_{CH4, EG, t}$	=	Mass flow of methane in the exhaust gas in the time period $t (kg / t)$
$F_{CH4,RG,t}$	=	Mass flow of methane in the residual gas in the time period $t (kg / t)$
t	=	The two time periods in year y during which $F_{CH4, EG,m}$ is measured, each
		a minimum of one hour and separated by at least 6 months

- 117 F_{CH4, EG,t} is measured according to an appropriate national or international standard. F_{CH4,RG,t} is
- 118 calculated according to Step 1, and consists of the sum of methane flow in the minutes *m* that
- 119 make up the time period *t*.

120 Option B.2: Measurement of flare efficiency each minute $\eta_{flare,calc,m}$

- 121 Measurement of flare efficiency each minute $(\eta_{flare,calc,m})$ is determined based on monitoring 122 methane content in the exhaust gas and residual gas, and the air used in the combustion
- 123 process during the minute *m* in year *y*, as follows:

124
$$\eta_{flare,calc,m} = 1 - \frac{F_{CH4,EG,m}}{F_{CH4,RG,m}}$$
 (2)

125 Where:

$\eta_{flare,calc,y}$	=	Flare efficiency in the year y
$F_{CH4,EG,m}$	=	Cumulative mass flow of methane in the exhaust gas in the minute m (kg)
$F_{CH4,RG,m}$	=	Cumulative mass flow of methane in the residual gas in the minute m (kg)

(4)

126 $F_{CH4,RG,m}$ is calculated according to Step 1: Determine $F_{CH4,EG,m}$ according to Steps 2.1 - 2.4 127 below:

UNFCCC/CCNUCC

128 Step 2.1: Determine methane mass flow rate in the exhaust gas on a dry basis

129 The mass flow of methane in the exhaust gas is based on the volumetric flow of the exhaust 130 gas and the measured concentration of methane in the exhaust gas, as follows:

131
$$F_{CH4,EG,m} = V_{EG,m} \times fc_{CH4,EG,m} \times 10^{-6}$$
 (3)

132 Where:

F _{CH4,EG,m}	=	Cumulative mass flow of methane in the exhaust gas of the flare in dry
		basis at normal conditions in the minute m (kg)
V _{EG,m}	=	Volumetric flow rate of the exhaust gas in dry basis at reference conditions
		in minute $m (m^3 / m)$
fc _{CH4,EG,m}	=	Concentration of methane in the exhaust gas of the flare in dry basis at
		normal conditions in minute $m (mg / m^3)$

133 Step 2.2: Determine volumetric flow rate of the exhaust gas on a dry basis ($V_{EG,m}$)

134 Determine the average volume flow of the exhaust gas in minute *m* based on a stoichiometric

135 calculation of the combustion process. This depends on the chemical composition of the

residual gas, the amount of air supplied to combust it and the composition of the exhaust gas.

137 It is calculated as follows:

$$138 \qquad V_{EG,m} = Q_{EG,m} \times M_{RG,m}$$

139 Where:

V _{EG,m}	=	Volumetric flow rate of the exhaust gas in dry basis at reference conditions
		in minute $m (m^2 / m)$
Q _{EG,m}	=	Volume of the exhaust gas in dry basis at reference conditions per kilogram
		of residual gas in minute $m (m^3 / kg residual gas)$
Mpgm	=	Mass flow rate of the residual gas in the minute m (kg / m)
KO,III		

140 Step 2.3: Determine mass flow rate of the residual gas $(M_{RG,m})$

141 Project participants may select to monitor the mass flow rate of the residual gas in minute *m*

142 directly (see monitored parameter $M_{RG,m}$), or according to the procedure given in this step,

- 143 calculate $M_{RG,m}$ based on the volumetric flow rate and the density of the residual gas. The
- 144 density of the residual gas is determined based on the volumetric fraction of all components in145 the gas.

146
$$M_{RG,m} = \rho_{RG,ref,m} \times V_{RG,m}$$
(5)

147 Where:

M _{RG,m}	=	Mass flow of the residual gas in minute m (kg)
$\rho_{RG,ref,m}$	=	Density of the residual gas at reference conditions in minute $m (kg / m^3)$
V _{RG,m}	=	Volumetric flow rate of the residual gas in dry basis at reference conditions in the minute $m \text{ (m}^3/\text{ m)}$

148 and:

149
$$\rho_{RG,ref,m} = \frac{P_{ref}}{\frac{R_u}{MM_{RG,m}} \times T_{ref}}$$

150 Where:

vv nere.		
$\rho_{RG,ref,m}$	=	Density of the residual gas at reference conditions in minute $m (kg / m^3)$
P _{ref}	=	Atmospheric pressure at reference conditions (Pa)
R _u	=	Universal ideal gas constant (Pa.m ³ /kmol.K)
MM _{RG,m}	=	Molecular mass of the residual gas in minute <i>m</i> (kg / kmol)
T _{ref}	=	Temperature at reference conditions (K)

- 151 Use the equation below to calculate $MM_{RG,m}$. When applying this equation, then project
- 152 participants may choose to either a) use the measured volumetric fraction of each component *i*
- 153 of the residual gas, or b) as a simplification, measure the volumetric fraction of methane and
- 154 consider the difference to 100% as being nitrogen (N₂). The same equation applies,
- 155 irrespective of which option is selected.

156
$$MM_{RG,m} = \sum_{i} (v_{i,RG,m} \cdot MM_{i})$$
(7)

157 Where:

MM _{RG,m}	=	Molecular mass of the residual gas in minute <i>m</i> (kg / kmol)
MM _i	=	Molecular mass of residual gas component $i (kg / kmol)$
V _{i,RG,m}	=	Volumetric fraction of component <i>i</i> in the residual gas in the minute <i>m</i>
i	=	Component of residual gas. If option a) is selected to measure the volumetric fraction, then $i = CH_4$, CO, CO ₂ , O ₂ , H ₂ , H ₂ S, NH ₃ , N ₂ or if option b) is selected then $i = CH_4$ and N ₂

158 Step 2.4: Determine volume of the exhaust gas in dry basis at reference conditions per 159 kilogram of residual gas $Q_{EG,m}$

160
$$Q_{EG,h} = Q_{CO_2,EG,h} + Q_{O_2,EG,h} + Q_{N_2,EG,h}$$
 (8)

161 Where:

Q _{EG,m}	=	Volume of the exhaust gas in dry basis at reference conditions per kg of
		residual gas in the minute $m (m^3 / kg residual gas)$
Q _{CO2,EG,m}	=	Quantity of CO ₂ volume in the exhaust gas at reference conditions per kg
		of residual gas in the minute m $(m^3/kg residual gas)$
Q _{N2,EG,m}	=	Quantity of N ₂ volume in the exhaust gas at reference conditions per kg
		of residual gas in the minute m $(m^3/kg residual gas)$
Q _{O2,EG,m}	=	Quantity of O ₂ volume in the exhaust gas at reference conditions per kg
		of residual gas in the minute $m (m^3 / kg residual gas)$

162
$$Q_{O_2,EG,m} = n_{O2,EG,m} \times VM_{ref}$$

163 Where:

Q _{O2,EG,m}	=	Quantity of O ₂ volume in the exhaust gas at reference conditions per kg
		of residual gas in the minute $m (m^3 / kg residual gas)$
n _{O2,EG,m}	=	Quantity of O ₂ moles in the exhaust gas per kg residual gas flared in
		minute <i>m</i> (kmol / kg residual gas)
VM _{ref}	=	Volume of one mole of any ideal gas at reference temperature and
		pressure (m ³ / kmol)

(6)

(9)

164
$$Q_{N2,EG,m} = VM_{ref} \times \left\{ \frac{MF_{N,RG,m}}{200AM_N} + \left(\frac{1 - v_{O2,air}}{v_{O_2,air}} \right) \times \left[F_{O2,RG,m} + n_{O2,EG,m} \right] \right\}$$
 (10)

$Q_{\text{N2,EG},m}$	=	Quantity of N_2 volume in the exhaust gas at reference conditions per kg of residual gas in the minute m (m ³ /kg residual gas)
VM _{ref}	=	Volume of one mole of any ideal gas at reference temperature and pressure $(m^3 / kmol)$
MF _{N,RG,m}	=	Mass fraction of nitrogen in the residual gas in the minute m
AM _N	=	Atomic mass of nitrogen (kg/kmol)
V _{O2,air}	=	Volumetric fraction of O_2 in air
F _{O2,RG,m}	=	Stochiometric quantity of moles of O ₂ required for a complete oxidation
		of one kg residual gas in minute <i>m</i> (kmol / kg residual gas)
n _{O2,EG,m}	=	Quantity of O_2 moles in the exhaust gas per kg residual gas flared in minute <i>m</i> (kmol / kg residual gas)

166
$$Q_{CO_2, EG, m} = \frac{MF_{C, RG, m}}{AM_C} \times VM_{ref}$$
(11)

167 Where:

Q _{CO2,EG,m}	=	Quantity of CO ₂ volume in the exhaust gas at reference conditions per kg of
		residual gas in the minute m $(m^3/kg residual gas)$
MF _{C,RG,m}	=	Mass fraction of carbon in the residual gas in the minute m
AM _C	=	Atomic mass of carbon (kg / kmol)
VM _{ref}	=	Volume of one mole of any ideal gas at reference temperature and pressure $(m^3 / kmol)$

168
$$n_{O2,EG,m} = \frac{v_{O_2,EG,m}}{\left(1 - \left(v_{O_2,EG,m} / v_{O_2,air}\right)\right)} \cdot \left[\frac{MF_{C,RG,m}}{AM_C} + \frac{MF_{N,EG,m}}{2AM_N} + \left(\frac{1 - v_{O_2,air}}{v_{O_2,air}}\right) \cdot F_{O2,RG,m}\right]$$
(12)

169 Where:

n _{O2,EG,m}	=	Quantity of O_2 moles in the exhaust gas per kg residual gas flared in minute m
		(kmol / kg residual gas)
V _{O2,EG,m}	=	Volumetric fraction of O_2 in the exhaust gas in the minute <i>m</i>
V _{O2,air}	=	Volumetric fraction of O_2 in the air (0.21)
MF _{C,RG,m}	=	Mass fraction of carbon in the residual gas in the minute <i>m</i>
AM _C	=	Atomic mass of carbon (kg / kmol)
MF _{N,RG,m}	=	Mass fraction of nitrogen in the residual gas in the minute m
AM_N	=	Atomic mass of nitrogen (kg / kmol)
F _{O2,RG,m}	=	Stochiometric quantity of moles of O ₂ required for a complete oxidation of
		one kg residual gas in minute <i>m</i> (kmol / kg residual gas)

170
$$F_{O2,RG,m} = \frac{MF_{C,RG,m}}{AM_C} + \frac{MF_{H,RG,m}}{4AM_H} - \frac{MF_{O,RG,m}}{2AM_O}$$
 (13)

171 Where:

··· ·····.		
F _{O2,RG,m}	=	Stochiometric quantity of moles of O2 required for a complete oxidation of
		one kg residual gas in minute <i>m</i> (kmol / kg residual gas)
MF _{C,RG,m}	=	Mass fraction of carbon in the residual gas in the minute <i>m</i>
AM _C	=	Atomic mass of carbon (kg / kmol)
MF _{N,RG,m}	=	Mass fraction of nitrogen in the residual gas in the minute <i>m</i>
AM _N	=	Atomic mass of nitrogen (kg / kmol)
MF _{H,RG,m}	=	Mass fraction of hydrogen in the residual gas in the minute <i>m</i>
AM _H	=	Atomic mass of hydrogen (kg / kmol)

- 172 Determine the mass fractions of carbon, hydrogen, oxygen and nitrogen in the residual gas,
- 173 using the volumetric fraction of component *i* in the residual gas using the equation below.
- 174 When applying this equation, then project participants may choose to either a) use the
- 175 measured volumetric fraction of each component *i* of the residual gas, or b) as a
- 176 simplification, measure the volumetric fraction of methane and consider the difference to
- 177 100% as being nitrogen (N_2) . The same equation applies, irrespective of which option is 178 selected.

179
$$MF_{j,RG,m} = \frac{\sum_{i} V_{i,RG,m} \times AM_{j} \times NA_{j,i}}{MM_{RG,m}}$$
(14)

180 Where:

MF _{j,RG,m}	=	Mass fraction of element <i>j</i> in the residual gas in minute <i>m</i>
V _{i,RG,m}	=	Volumetric fraction of component <i>i</i> in the residual gas in the minute <i>m</i>
AM	=	Atomic mass of element <i>j</i> (kg / kmol)
NAji	=	Number of atoms of element <i>j</i> in component <i>i</i>
MM _{RG,m}	=	Molecular mass of the residual gas in minute <i>m</i> (kg / kmol)
j	=	elements C, O ₂ ,H ₂ , N ₂
i	=	Component of residual gas. If option a) is selected to measure the
		volumetric fraction, then $i = CH_4$, CO, CO ₂ , O ₂ , H ₂ , H ₂ S, NH ₃ , N ₂ or if
		option b) is selected then $i = CH_4$ and N_2

181 Step 3: Calculate annual project emissions from flaring

- 182 Project emissions from flaring are calculated as the sum of emissions for each minute *m* in
- 183 year *y*, based on the methane flow rate in the residual gas ($F_{CH4,RG,m}$) and the flare efficiency 184 ($\eta_{flare,m}$), as follows:

185
$$PE_{flare,y} = GWP_{CH4} \times \sum_{m=1}^{525600} F_{CH4,RG,m} \times (1 - \eta_{flare,m}) \times 10^{-3}$$
 (15)

186 Where:

PE _{flare,y}	=	Project emissions from flaring of the residual gas in year y (t CO ₂ e)
GWP _{CH4}	=	Global Warming Potential of methane valid for the commitment period
		$(t CO_2 e / t CH_4)$
F _{CH4,RG,m}	=	Cumulative mass flow of methane in the residual gas in the minute m (kg)
$\eta_{flare,m}$	=	Flare efficiency in minute <i>m</i>

Data and parameters not monitored 187

- Parameters and data that are not monitored include the constants used in equations, as listed 188 189 in Table 1 below.

190

Table 1. Constants used in equations	Table 1:	Constants	used in	n eq	uations
--------------------------------------	----------	-----------	---------	------	---------

Parameter	SI Unit	Description	Value
MM _{CH4}	kg/kmol	Molecular mass of methane	16.04
MM _{CO}	kg/kmol	Molecular mass of carbon monoxide	28.01
MM _{CO2}	kg/kmol	Molecular mass of carbon dioxide	44.01
MM _{O2}	kg/kmol	Molecular mass of oxygen	32.00
MM _{H2}	kg/kmol	Molecular mass of hydrogen	2.02
MM _{N2}	kg/kmol	Molecular mass of nitrogen	28.02
AM _C	kg/kmol	Atomic mass of carbon	12.00
	(g/mol)		
AM _H	kg/kmol	Atomic mass of hydrogen	1.01
	(g/mol)		
AM _O	kg/kmol	Atomic mass of oxygen	16.00
	(g/mol)		
AM _N	kg/kmol	Atomic mass of nitrogen	14.01
	(g/mol)		
P _{ref}	Ра	Atmospheric pressure at reference	101 325
		conditions	
R _u	Pa.m ³ /kmol.K	Universal ideal gas constant	0.008314472
T _{ref}	K	Temperature at reference conditions	273.15
V _{O2,air}	Dimensionless	O ₂ volumetric fraction of air	0.21
GWP _{CH4}	tCO ₂ /tCH ₄	Global warming potential of methane	21
MV _n	m ³ /Kmol	Volume of one mole of any ideal gas at	22.414
		reference conditions	
$ ho_{CH4, n}$	kg/m ³	Density of methane gas at reference	0.716
		conditions	
NA _{i,j}	Dimensionless	Number of atoms of element j in	
		component i, depending on molecular	
		structure	
VM _{ref}	m ³ / kmol	Volume of one mole of any ideal gas at	22.4
		reference temperature and pressure	

191

Data / Parameter:	GWP _{CH4}
Data unit:	$t CO_2 e / t CH_4$
Description:	Global Warming Potential of CH ₄
Source of data:	IPCC
Value to be applied:	21 for the first commitment period. Shall be updated for future
	commitment periods according to any future COP/MOP decisions
Any comment:	-

Data / Parameter:	SPEC _{flare}
Data unit:	Temperature - °C
	Flow rate or heat flux - kg / h or m^3/h
	Maintenance schedule - number of days
Description:	Manufacturer's flare specifications for temperature, flow rate and
	maintenance schedule
Source of data:	Flare manufacturer
Measurement	Document in the CDM-PDD the flare specifications set by the
procedures:	manufacturer for the correct operation of the flare for the following
	parameters:
	(a) Minimum and maximum inlet flow rate, if necessary converted
	to flow rate at reference conditions or heat flux;
	(b) Minimum and maximum operating temperature; and
	(c) Maximum duration in days between maintenance events
Any comment:	Only applicable in case of enclosed flares. Maintenance schedule is
	not required if Option A is selected to determine flare efficiency of
	an enclosed flare

194 III. MONITORING METHODOLOGY PROCEDURE

195 Data and parameters to be monitored

196 All monitored data must be linked in time, i.e. calculations shall be performed considering

197 only a set of data acquired in the same time interval in case of continuous monitoring. Project

198 participants shall use one minute or a smaller discrete time interval for reporting purposes.

199

Data / Parameter:	F _{CH4,EG,t}
Data unit:	kg / t
Description:	Mass flow of methane in the exhaust gas in the time period <i>t</i>
Source of data:	Third party accredited entity
Measurement procedures:	Measure the mass flow of methane in the exhaust gas according to an appropriate national or international standard e.g. UKs Technical Guidance LFTGN05
	The time period <i>t</i> over which the mass flow is measured must be at least one hour
	The average flow rate to the flare during the time period <i>t</i> must be greater than the average flow rate observed for the previous six months
Monitoring	Biannual
frequency:	
QA/QC procedures	According to the standard applied.
Any comment:	Monitoring of this parameter is required in the case of enclosed flares and the project participant selects Option B.1 to determine flare efficiency

200

201

Data / Parameter:	T _{EG,m}
Data unit:	°C
Description:	Temperature in the exhaust gas of the enclosed flare in minute m
Source of data:	Project participants
Measurement procedures:	Measure the temperature of the exhaust gas in the flare by a Type N thermocouple. Measurements outside the operational temperature specified by the manufacturer may indicate that the flare is not functioning correctly and may require maintenance
	Flare manufacturers must provide suitable monitoring ports for the monitoring of the temperature of the flare. These would normally be expected to be in the middle third of the flare
	Where more than one temperature port is fitted to the flare, the flare manufacturer must provide written instructions detailing the conditions under which each location shall be used and the port most suitable for monitoring the operation of the flare according to manufacturers specifications for temperature
Monitoring frequency:	Once per minute
QA/QC procedures	Thermocouples should be replaced or calibrated at least every year in accordance with their maintenance schedule
Any comment:	Unexpected changes such as a sudden increase in temperature can occur for different reasons. These events should be noted in the site records along with any corrective action that was implemented to correct the issue
	Monitoring of this parameter is applicable in case of enclosed flares. Measurements are required to determine if manufacturer's flare specifications for operating temperature are met

Data / Parameter:	V _{i,RG,m}	
Data unit:	-	
Description:	Volumetric fraction of component <i>i</i> in the residual gas on a dry basis	
	in the hour h where $i = CH_4$, CO, CO ₂ , O ₂ , H ₂ , H ₂ S, NH ₄ , N ₂	
Source of data:	Measurements by project participants using a continuous gas	
	analyser	
Measurement	Measurement may be made on either dry or wet basis. If value is	
procedures:	made on a wet basis, then it shall be converted to dry basis for	
	reporting	
Monitoring	Continuously. Values to be averaged on a minute basis	
frequency:		
QA/QC procedures	Analysers must be periodically calibrated according to the	
	manufacturer's recommendation. A zero check and a typical value	
	check should be performed by comparison with a standard certified	
	gas	
Any comment:	As a simplified approach, project participants may only measure the	
	content CH ₄ , CO and CO ₂ of the residual gas and consider the	
	remaining part as N ₂ .	
	Monitoring of this parameter is only applicable in case of enclosed	
	flares and continuous monitoring of the flare efficiency	

Data / Parameter:	V _{RG,m}	
Data unit:	m^3/m	
Description:	Volumetric flow rate of the residual gas on dry basis at reference	
	conditions in the minute <i>m</i>	
Source of data:	Measurements by project participants using a flow meter	
Measurement	Instruments with recordable electronic signal (analogical or digital)	
procedures:		
Monitoring	Continuously. Values to be averaged on a minute basis	
frequency:		
QA/QC procedures	Flow meters are to be periodically calibrated according to the	
	manufacturer's recommendation	
Any comment:	Monitoring of this parameter is applicable in case of enclosed flares and continuous monitoring of the flare efficiency and if project participant selects to calculate $V_{RG,m}$ instead of monitoring directly	
	Monitoring of this parameter may also be necessary for confirming that the manufacturer's specifications for flow rate/heat flux are met. In this case the flow rate should be measured in a m^3 / h basis	

Data / Parameter:	M _{RG m}	
Data unit:	kg/m	
Description:	Mass flow rate of the residual gas at reference conditions on dry basis in the minute <i>m</i>	
Source of data:	-	
Measurement procedures (if any):	Instruments with recordable electronic signal (analogical or digital)	
Monitoring frequency:	Continuous, values to be averaged on a minute basis	
QA/QC procedures:	Periodic calibration against a primary device provided by an independent accredited laboratory is mandatory. Calibration and frequency of calibration is according to manufacturer's specifications	
Any comment:	Monitoring of this parameter is applicable in case of enclosed flares and continuous monitoring of the flare efficiency and if project participant selects to monitor $M_{RG,m}$ directly, instead of calculating	
	Monitoring of this parameter may also be necessary for confirming that the manufacturer's specifications for flow rate/heat flux are met. In this case the flow rate should be measured in a kg / h basis	

Data / Parameter:	V _{O2,EG,m}	
Data unit:	-	
Description:	Volumetric fraction of O_2 in the exhaust gas in the minute <i>m</i>	
Source of data:	Measurements by project participants using a continuous gas	
	analyser	
Measurement	Extractive sampling analysers with water and particulates removal	
procedures:	devices or in situ analysers for wet basis determination. The point of	
	measurement (sampling point) shall be in the upper section of the	
	flare (80% of total flare height). Sampling shall be conducted with	
	appropriate sampling probes adequate to high temperatures level	
	(e.g. inconel probes)	

Monitoring	Continuously. Values to be averaged on a minute basis	
frequency:		
QA/QC procedures	Analysers must be periodically calibrated according to the	
	manufacturer's recommendation. A zero check and a typical value	
	check should be performed by comparison with a standard gas	
Any comment:	Monitoring of this parameter is only applicable in case of enclosed	
	flares and continuous monitoring of the flare efficiency	

Data / Parameter:	fc _{CH4,FG,m}	
Data unit:	mg/m^3	
Description:	Concentration of methane in the exhaust gas of the flare in dry basis	
	at normal conditions in the minute <i>m</i>	
Source of data:	Measurements by project participants using a continuous gas	
	analyser	
Measurement	Extractive sampling analysers with water and particulates removal	
procedures:	devices or in situ analyser for wet basis determination. The point of	
	measurement (sampling point) shall be in the upper section of the	
	flare in order that the sampling is of the gas after consumption has	
	taken place (80% of total flare height). Sampling shall be conducted	
	with appropriate sampling probes adequate to high temperatures	
	level (e.g. inconel probes)	
Monitoring	Continuously. Values to be averaged on a minute basis	
frequency:		
QA/QC procedures	Analysers must be periodically calibrated according to	
	manufacturer's recommendation. A zero check and a typical value	
	check should be performed by comparison with a standard gas	
Any comment:	Monitoring of this parameter is only applicable in case of enclosed	
	flares and continuous monitoring of the flare efficiency	
	Measurement instruments may read ppmv or % values. To convert	
	from ppmv to mg/m ³ simply multiply by 0.716. 1% equals 10 000	
	ppmv	

Data / Parameter:	Flame _m		
Data unit:	Flame on or Flame off		
Description:	Flame detection of flare in the minute <i>m</i>		
Source of data:	Project participants		
Measurement	Measure using a fixed installation optical flame detector: Ultra Violet		
procedures:	detector or Infra Red or both		
Monitoring	Once per minute. Detection of flame recorded as a minute that the		
frequency:	flame was on, otherwise recorded as a minute that the flame was off		
QA/QC procedures	Equipment shall be maintained and calibrated in accordance with		
	manufacturer's recommendations		
Any comment:	Applicable to all flares		

Data / Parameter:	Maintenance _y	
Data unit:	Calendar dates	
Description:	Maintenance events completed in year <i>y</i>	
Source of data:	Project participants	

Measurement	Record the date that maintenance events were completed in year y.	
procedures.	Records of maintenance logs must include all aspects of the	
procedures.	maintenance including the details of the norgen(g) undertaking the	
	maintenance including the details of the person(s) undertaking the	
	work, parts replaced, or needing to be replaced, source of	
	replacement parts, serial numbers and calibration certificates	
Monitoring	Annual	
frequency:		
QA/QC procedures	Records must be kept in a maintenance log for two years beyond the	
-	life of the flare	
Any comment:	Monitoring of this parameter is required for the case of enclosed	
	flares and the project participant selects Option B to determine flare	
	efficiency	
	enterency	
	These dates are required so that they can be compared to the	
	maintenance schedule to check that maintenance events were	
	completed within the minimum time between maintenance events	
	completed within the minimum time between municipalities events	
	specified by the manufacturer (SPEC, flare)	

212 IV. REFERENCES

Fundamentals of Classical Thermodynamics; Gordon J. Van Wylen, Richard E. Sonntag and
 Claus Borgnakke; 4° Edition, 1994, John Wiley & Sons, Inc.

215 Environment Agency Guidance for monitoring enclosed landfill gas flares. LFTGN05 v2

- 216 2010
- 217
- 218

-----History of the document

Version	Date	Nature of revision(s)
02.0.0	EB 67, Annex # 11 May 2012	 Revision to: Provide an additional option for determining the methane destruction efficiency of an enclosed flare, using biannual measurements of the efficiency of the flare; Expand the applicability of the tool to flaring gases that also contain ammonium and hydrogen sulfide; Define low height flares and specifies how the methane destruction efficiency shall be determined for this type of flares; Change the title from Methodological "Tool to determine project emissions from flaring gases containing methane" to "Project emissions from flaring". Improve the structure and other editorial aspects. Due to the overall modification of the document, no highlights of the changes are provided.
01.0.0	EB 28, Annex 13 15 December 2006	Initial adoption.
Decision Class: Regulatory Document Type: Tool Business Function: Methodology		