

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006

CONTENTS

- A. General description of project activity
- B. Application of a baseline and monitoring methodology
- C. Duration of the project activity / crediting period
- D. Environmental impacts
- E. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: Baseline information
- Annex 4: Monitoring plan

SECTION A. General description of project activity

A.1 Title of the project activity:

>>

Emission reductions through partial substitution of fossil fuel with alternative fuels in three cement plants of Holcim Philippines Inc.

Version 0203, 0920/0409/2008

A.2. Description of the <u>project activity</u>:

>>

The project activity consists of a partial replacement of fossil fuel (predominantly coal) in the kiln system by alternative fuels (AF) like agricultural by-products (rice husk, coconut waste, tobacco leaves, bagasse, etc.) and sorted municipal solid waste (shredded plastics, shredded rubbers, etc). The purpose of the project activity is to reduce CO_2 emissions generated from fuel burning requirements in clinker production and therefore cement manufacturing.

The project is for implementation in the 3 cement plants of Holcim Philippines, Inc. (HPHI) located in Bulacan, Lugait and Davao. The project activity aims to replace 15% of the heat requirement with agricultural waste and 3.8% with sorted municipal solid waste. The thermal substitution rate has been fixed taking into consideration the technical barriers to be overcome to ensure that production losses are minimized and quality of the clinker is not compromised.

Clinker manufacturing, and therefore cement manufacturing, is a highly, energy-intensive process. The pyro-processing stage, i.e., where the raw material is heated to a temperature that leads to the key chemical change in producing clinker, requires the largest amount of heat in the total cement manufacturing activity. The use of agricultural by-products and sorted municipal solid waste as alternative sources of thermal energy to manufacture the clinker will therefore result in a significant saving on non-renewable fossil fuels.

The project activity will strengthen sustainable development, specifically, in the 3 regions where HPHI cement facilities are located. The volume of non-renewable fuels required in the cement manufacturing process will be significantly reduced, consequently, economised. The project activity will also contribute regionally to the waste disposal infrastructure and will help address local environmental problems. It will bring about wide-ranging benefits to the health and well-being of the community by raising the socio-economic level and improving the quality of ambient air of the locality.

As a contribution to sustainable development in the Philippines, the project will carry out several environmental improvements and socio-economic benefits such as:

• The use of cleaner, more efficient and sustainable solution to waste disposal

One of the various environmental challenges faced by the Philippine government is the proper disposal of wastes. The Japan International Cooperation Agency (JICA) estimates that approximately 2.4 million tonnes of hazardous wastes are generated annually (2002). In addition, several thousand tonnes of

UNFCCC

municipal solid wastes are generated daily. The same study showed that the infrastructure for waste collection, treatment and disposal in the Philippines is underdeveloped. With this problem on waste disposal, sources of drinking water become polluted and the flora and fauna are destroyed.

In many developed countries, cement kilns are the preferred option in the management of suitable wastes since the energy and material value of these waste materials can be reclaimed or recovered. Provided that these are properly equipped with sufficient safety and environmental management systems, cement kilns via co-processing have an enormous potential to help address the disposal of wastes in the Philippines.

• Livelihood and other economic opportunities in the community

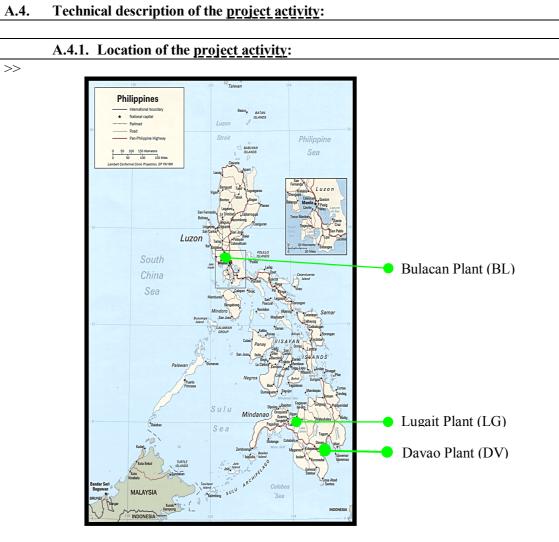
Although farmers and rice millers currently earn income from their existing trade, this project is expected to provide an opportunity for additional income. Through this project, agricultural by-products that were once considered wastes will now become a source of revenue, not just to the farmers and rice-millers but, to other members of the community as well.

Wastes that will be utilized as alternative fuels will be yielded by rice husk mills and Material Recovery Facilities (MRF). These wastes will be transported to the nearest HPHI cement plant by trucks. Employment will be generated from the process of collecting, pre-processing and transporting of these wastes. In a survey conducted by HPHI, the biomass supply requires at least 4 people for every delivery of truck load to the plant. For HPHI Bulacan plant alone, it is estimated that 20 truckloads per day is needed to replace 15% of the fossil fuel requirement.

A Material Recovery Facility (MRF) already exists in Bulacan. This will soon be followed by the communities in Davao and Lugait. MRF's in these areas will be installed in compliance with the Ecological Solid Waste Management Act of 2000.

• Provision of new financial resources

The project activity will also support regional economic development. The use of agricultural by-products, previously burned in open air or landfilled in an uncontrolled manner without any value, will create new income sources. The biomass business will provide opportunity for additional revenue for local community. As a result, economic status and social well-being of the local people will be improved


A.3. Project participants:				
>>				
Name of Party involved	Kindly indicate if the Party involved wishes to be considered as a project participant			
Philippines (host)	Private entity: Holcim Philippines, Inc.	No		
Switzerland	Private entity: Holcim Group Support Ltd	No		

>>

CDM – Executive Board

page 4

	A.4.1.1.	Host Party(ies):	
>>			

The Philippines

	A.4.1.2. Region/State/Province etc.:	
>> Bulacan Plant Lugait Plant Davao Plant	 (BL) : Region 3 – Central Luzon (LG) : Region 10 – Northern Mindano (DV) : Region 11 – Davao Region 	
	A.4.1.3. City/Town/Community etc:	

>>

page 5

Bulacan Plant	(BL)	: Bulacan
Lugait Plant	(LG)	: Lugait
Davao Plant	(DV)	: Davao City

A.4.1.4. Detail of physical location, including information allowing the unique identification of this <u>project activity</u> (maximum one page):

>>

Bulacan Plant (BL) Bo. Matictic, Norzagaray Bulacan, 3013 (Region 3) N 14^0 53' 42.1" E 121^0 4' 34.1" Z 125m ASL UTM Position 51P

Lugait Plant (LG) Lugait, Misamis Oriental, 9025 (Region 10) N 8^0 19' 45" to 8^0 20' 15" E 124⁰ 14' 30" to 124⁰ 15' 30" Z 75m ASL UTM Position 51N

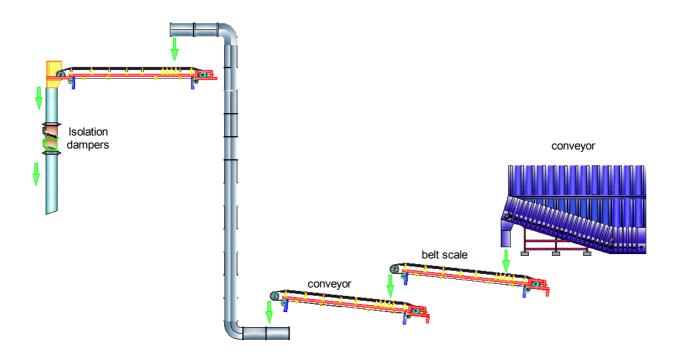
Davao Plant (DV) Bo. Ilang, Davao City, 8000 (Region 11) N 70 10' 37.49" E 1250 39' 7.75" Z 3.25m ASL UTM Position 51N

A.4.2. Category(ies) of project activity:

>>

Manufacturing Industries

A.4.3. Technology to be employed by the <u>project activity</u>:


>>

The technology, described below, that will be employed to co-process agricultural by-products and sorted municipal solid waste has been developed by HPHI with the support of experts from Holcim Group. A similar system will be set up in the 3 plants. The department of alternative fuels and raw materials (AFR) of Holcim Group Support (HGRS) provides an insight on the state of the art technologies, exchanges experiences in the alternative fuels selection plus design of installations, develops tools to limit the impact on production loss and clinker quality and establishes quality control procedures.

The system to be used will be set-up in different segments. The first segment aims to install a specific feeding system for each of the 3 cement plants with a dedicated covered area to receive the biomass. For Bulacan plant, the alternative fuels are fed into the separate-line calciner (SLC) and in-line calciner (ILC). For Lugait and Davao plants, the alternative fuels will be fed into the in-line calciner (ILC). The second segment includes the setting-up of the pre-processing facilities, consisting of shredder, screening and conveying system. The third segment aims to increase the capacity by optimizing the installations and replacing the coal to as much as 15%, the thermal substitution rate design capacity.

The figure below shows the feeding facility that will be installed.

All civil structure, mechanical equipment and supporting structure shall have its standard safety devices such as local emergency stop switch, automatic shut-off damper, pull rope switches, access platforms and stairways, handrails, etc.

Alternative fuels such as shredded plastics and rubbers, as well as the agricultural by-products bigger than 20 mm, will be fed through the belt conveyor to the designated feeding point (either to the calciner or through the kiln hood). A weigh feeder or dosing system will ensure feed rate accuracy. The feeding system will be monitored and controlled. The delivery, dosing and storage systems for the biomass and MSW may be further modified and enhanced as experience is gained. The latter will be covered in the third segment.

SLC: AFR deliver point Separate Line Calciner In Line Calciner 0 0 ò -Kiln hood: ILC: AFR AFR deliver deliver point point Kiln 8888

All alternative fuels will be sampled and analyzed before these will be used. Strict parameters shall guide the quality control process which includes continuous monitoring of emission of specific pollutants using the Continuous Emission Monitoring System (CEMS) that has been installed in all the 3 plants. Holcim Philippines, Inc. (HPHI) implements a comprehensive environmental management system in all its cement plants, accordingly, all plants are ISO14001 certified. With this certification, HPHI is committed to manage responsibly any impacts in the environment of its operations.

page 8

A.4.4 Estimated amount of emission reductions over the chosen crediting period:

>>

A crediting period of 10 years has been chosen for the project activity.

Year	Annual estimation of emission reductions in tonnes of CO2			
	Bulacan	Lugait	Davao	HPHI
	(BL)	(LG)	(DV)	Total
Year A	52,358	36, <mark>154006</mark>	29, <mark>958883</mark>	118, <mark>470248</mark>
Year B	76,204	57, <mark>212005</mark>	47, 392289	180, <mark>808499</mark>
Year C	96,246	6 8,017 7,853	56,4 <mark>34316</mark>	220, 697 414
Year D	96,246	67,853 <u>68,143</u>	56,316 56,434	220,414 220,822
Year E	96,246	67,853 68,143	56,316 56,434	220,414 220,822
Year F	96,246	67,853 <u>68,143</u>	56,316 56,434	220,414 220,822
Year G	96,246	67,853 <u>68,143</u>	56,316 56,434	220,414 220,822
Year H	96,246	67,853 <u>68,143</u>	56,316 56,434	220,414 220,822
Year I	96,246	67,853 68,143	56,31656,434	220,414 220,822
Year J	96,246	67,853 <u>68,143</u>	56,316 56,434	220,414 220,822
Total estimated reductions (tonnes of CO ₂ e)	898,530	638,382635,832	528,818 527,699	2,06 5,7312,061
Total number of crediting years	10	10	10	10
Annual average over the crediting period of estimated reductions (tonnes of CO ₂ e)	89,853	63, 838583	52, <mark>882</mark> 770	206, 573206

A.4.5. Public funding of the project activity:

>>

The project activity has received no public funding.

B.1. Title and reference of the <u>approved baseline and monitoring methodology</u> applied to the <u>project activity</u>:

>>

ACM0003 / Version 04

Approved baseline methodology and approved monitoring methodology "Emissions reduction through partial substitution of fossil fuels with alternative fuels in cement manufacture".

B.2 Justification of the choice of the methodology and why it is applicable to the <u>project activity:</u>

The approved baseline methodology ACM0003 is appropriate for HPHI's project activity since all the applicability conditions are fulfilled.

The applicability is justified in the following:

- Fossil fuels used in cement manufacturing are partially replaced by alternative fuels such biomass residues (rice husk, coconut waste, tobacco leave, bagasse, etc.) and sorted municipal waste (plastics, rubbers, etc.).
- The biomass residues are available as an excess by-product and, in the absence of the project activity, would be landfilled or burned in an uncontrolled manner without utilizing them for energy purpose.

Rice husk, the main agricultural by-product that will be used, is readily available in abundant supply. Republic Act 9003, known as the Ecological Solid Waste Management Act of 2000, prohibits the open burning of solid wastes which includes, amongst others, agricultural wastes.

- The biomass residue used by the project activity doesn't necessitate preparation requiring the use of a significant quantity of energy. Except for one supplier wherein a small amount of energy is used to prepare the husk, the only activity requiring the use of energy is in the transport of the rice husks to the cement plant.
- CO₂ emission reduction is only related to the CO₂ emission generated by fuel burning requirement and not by decarbonisation of raw material.
- The methodology is applicable only for the <u>currently</u> installed <u>capacity</u> capacity that exit by the time of validation. The installed capacity has been validated on site based on the original designed capacity supported by suppliers' documents and has been cross-checked with the Best Demonstrate Practice of 2005. <u>presented below</u>. Here below the installed capacity per plant.

Bulacan Plant	(BL)	: 5'500 tonnes of clinker/day
Lugait Plant Line 2	(LG)	: 4'000 tonnes of clinker/day
Davao Plant	(DV)	: 3'500 tonnes of clinker/day

• The amount of alternative fuels available is at least 1.5 times the amount required to meet the consumption of all users consuming the same alternative fuels.

The alternative fuels to be used in the project activity, i.e., agricultural waste (mainly rice husk) and sorted municipal solid waste (MSW), are available in abundance in the Philippines. The table below shows that the estimated amount of rice husk available in each region is more than 9 times the amount proposed to be used by the project activity. The official data on availability of rice husk, coconut waste and bagasse as well as the data on sorted MSW (mainly plastic) are presented in Appendix 1. The CDM country guide for

the Philippines also confirms that there is abundant supply of biomass in the Philippines and that the amount is increasing.

Availability of the main alternative fuels proposed to be used in the project activity	ty.
--	-----

HPHI plants	Rice husk Average of rice husk proposed to be used by he project per year during the crediting period (t)	Rice husk Official availability ¹ in the region per year (t)
Bulacan (BL)	62,827	705,808
Lugait (LG)	50,763	573,010
Davao (DV)	41,906	373,702

¹Source: Philippine Bureau of Agricultural Statistics / computed at 15% of the total palay rice husk volume. See details in appendix 1.

To support the official data, HPHI has conducted during the stakeholder's meetings and in the following weeks, an additional investigation in order to know the alternative usage of the rice husk and therefore to determine the net availability including all other users. A form was given to owners of rice mills. The percentage which is either landfilled (no distinction of anaerobic, aerobic or stockpiled), burned in open air, used for fertilizer, brought to companies, sent to haulers, used as fuel, given or used as food to animal was asked. The investigation has been done on a limited number of rice mills owners, the most active one in term of rice husk utilization and therefore the investigation is highly conservative. An update of the investigation will be done during verification. The investigation gives a conservative overview of the current practice in each region. In combination with the official data, an estimation of the net amount available (taking out the amount consumed by other users) is possible. As written above, the survey is very conservative due to the limited amount of rice mill's owners which are the active one and therefore we consider that the amount available is the amount that will be either landfilled, burned in open air and the amount which is already sent to HPHI. The table below resumes the investigation which is available in detail per region and rice mill owners. The number of rice mills'owners is indicated.

Investigation on the current practice of rice husk disposal

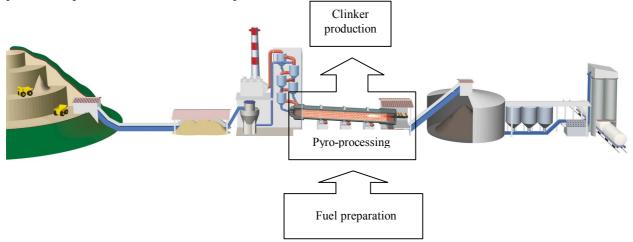
6							
Rice husk	Rice husk	Rice husk	Rice husk	Rice husk	Rice husk	Rice husk	Rice husk
Number of	% sent to	% burned	% brought	% brought	% used as	% used as	% given,
rice mills	uncontrolledl	in open	to HPHI	to other	fertilizer	fuel	used as
owners asked	andfill (no	air	(2006 and	companies			animals
during the	distinction)		2008)	or to			food or
investigation				haulers			others
	Amount	Amount	Amount	Amount	Amount	Amount	Amount
	available	available	available	not	not	not	not
				available	available	available	available
25 53	16 53%	0%	22 13%	54 27%	2%	5 4%	1%
4	22%	21%	25%	0%	7%	8%	18%
1432	3164 %	+7 %	0.6 10%	1 60.7 6%	<mark>61</mark> %	12 %	0%
	Number of rice mills owners asked during the investigation 2553 4	Number of rice mills% sent to uncontrolledlowners asked during the investigationandfill (no distinction)Amount available25531653%422%	Number of rice mills% sent to uncontrolledl% burned in open airowners asked during the investigationandfill (no distinction)airAmount availableAmount available25531653%0%422%21%	Number of rice mills% sent to uncontrolledl% burned in open air% brought to HPHI (2006 and 2008)owners asked during the investigationandfill (no distinction)air(2006 and 2008)Amount availableAmount availableAmount availableAmount available25534653%0%2213%422%21%25%	Number of rice mills% sent to uncontrolledl% burned in open% brought to HPHI% brought to otherowners asked during the investigationandfill (no distinction)air(2006 and 2008)companies or to haulersAmount availableAmount availableAmount availableAmount availableAmount available25531653%0%2213%5427%422%21%25%0%	Number of rice mills% sent to uncontrolledl% burned in open% brought to HPHI% brought to other% used as fertilizerowners asked during the investigationandfill (no distinction)air(2006 and 2008)companies or to haulers////Amount availableAmount availableAmount availableAmount availableAmount availableAmount available25531653%0%2213%5427%2%422%21%25%0%7%	Number of rice mills% sent to uncontrolledl% burned in open air% brought to HPHI% brought to other companies% used as fertilizer% used as fuelowners asked during the investigationandfill (no distinction)air(2006 and 2008)companies or to haulersFertilizerfuelAmount availableAmount availableAmount availableAmount availableAmount availableAmount availableAmount availableAmount available25531653%0%2213%5427%2%54%422%21%25%0%7%8%

Taking into account the amount available as only the amount sent to uncontrolled landfill and the amount burned in open air the percentage are:

HPHI plants	Rice husk Number of rice mills owners asked during the investigation	Rice husk % sent to uncontrolle dlandfill (no distinction)	Rice husk % burned in open air	Rice husk Amount available in compariso n with the amount proposed to be used
		Amount available	Amount available	
Bulacan (BL)	25 53	16 53%	0%	<mark>1.2x5.9x</mark>
Lugait (LG)	4	22%	21%	<mark>1.8x</mark> 4.9x
Davao (DV)	1432	3164 %	+7%	<mark>1.5x6.3x</mark>

As the investigation is very conservative and take into account only active rice mills' owner, we can combined the official source and the investigation and conclude that for Bulacan 16-53% means 112,929t374,078t available therefore 1.8x5.9x, for Lugait 43% means 246,394t therefore 4.9x and for Davao 3271% means 119,585265,328-t therefore 2.9x6.3x. The availability in each region is more than 1.5 time the amount to be used by all users.

The distances are:


HPHI plants	Distance from the existing furthest suppliers to the plant (km)
Bulacan (BL)	40 150
Lugait (LG)	159
Davao (DV)	200

page 12

B.3. Description of the sources and gases included in the project boundary

The figure below shows the cement manufacturing process. The physical project boundary covers all production processes related to clinker production.

The table below shows that CO₂ emissions from the fuel combustion, fuel transportation and fuel preparation are considered for the purpose of calculating project emissions and baseline emissions.

	Source	Gas	Included?	Justification / Explanation
		CO ₂	YES	Direct emissions from firing the kiln and
				processing
le		CH_4	NO	CH4 emissions from combustion processes
elir	Kiln fuel use			are considered negligible and excluded
Baseline	KIIII IUEI USE			because these emissions by the cement
8				industry are negligible (see WBCSD / WRI
				Cement protocol)
		N ₂ O	NO	see CH ₄
		CO ₂	YES	Direct emissions from firing the kiln and
~				processing (including supplemental fuels
vity				used in the precalciner)
ctiv		CH ₄	NO	CH4 emissions from combustion processes
Project activity	Kiln fuel use			are considered negligible and excluded
				because these emissions by the cement
				industry are negligible (see WBCSD / WRI
				Cement protocol)
		N ₂ O	NO	see CH ₄

On site	CO ₂	YES	Direct emissions due to AF transportation
transportation			and indirect emissions from fossil fuels
and			combustion of power plants from the grid
preparation of			due to electricity used.
alternative	CH_4	NO	NO CH ₄ emission
fuels	N ₂ O	NO	NO N ₂ O emission

Additional emissions included in the project activity as leakage are:

- Emissions (CO₂) from off site transportation of alternative fuels (reduction of fossil fuels transportation are neglected to be conservative).
- Emissions (CO₂) from off site preparation of alternative fuels.

B.4. Description of how the <u>baseline scenario</u> is identified and description of the identified baseline scenario:

>>

Baseline scenario selection

Baseline scenario 1: Utilization of fossil fuels based on global agglomerate data from 2002, 2003 and 2004 level.

Utilization of fossil fuel is the common practice in the cement industry in the Philippines. The Cement Manufacturers Association of the Philippines (CeMAP¹) doesn't publish details of the fuel portfolio of its members. CeMAP report however identifies coal (and the origin or source) as the fossil fuel use in the cement industries. The historical data of HPHI from 2002, 2003 and 2004 is available in the annual technical report and is presented in the calculation data sheet.

Fuel	Percentage (%) Baseline 1
Coal	82.4
Anthracite	9.8
Petcoke	6.4
Heavy oil	1.1
Light oil/ Diesel	0.0
Waste oil	0.0
Industrial waste originating from fossil	0.3
sources	0.5
Emission factor (tCO2/TJ)	95.04

Baseline 1 is a global average of 2002 to 2004 HPHI's fuel portfolio.

The global emission factor of the baseline 1 is 95.05-04 tCO2/TJ.

¹ www.**cemap**.org.ph

page 14

Baseline scenario 21a: Utilization of fossil fuels based on plant specific agglomerate data from 2002, 2003 and 2004 level.

As each plant has a slightly different fuel portfolio, therefore a second baseline based on plant specific fossil fuels used is proposed.

Below is scenario 2, "Utilization of fossil fuels based on plant specific agglomerate data from 2002, 2003 and 2004 level.":

Fuels	Percentage (%)	Percentage (%)	Percentage (%)
	Baseline 2	Baseline 2	Baseline 2
	Bulacan	Lugait	Davao
Coal	79.6	84.2	83.3
Anthracite	18.6	1.7	11.0
Petcoke	0.0	12.5	5.2
Heavy oil	0.9	1.5	0.5
Light oil/ Diesel	0.1	0.0	0.0
Waste oil	0.0	0.1	0.0
Industrial waste	0.8	0.0	
originating from fossil			0.0
sources			
Emission factor	95.09	94.69	95.22
(tCO2/TJ)	75.07	74.07	73.22

The baseline 2 presented above is more accurate than the baseline scenario 1 as the specific emission factor of each plant is used.

Baseline scenario 2: likely evolving fuel mix

The table below indicates the foreseen price in PhP of fossil fuels per MJ as per the forecast of 2006. The price includes the FOB and the freight. The detail of the forecast is presented in Annex E- Fuel price. The last shipment of Petcoke was received in 2005. Indeed, the use of petcoke is not foreseen anymore mainly due to the high sulphur concentration in comparison with the price². The consumption of heavy oil and diesel is used only to start the kiln as it is expensive fuels. The consumption will remain more less the same as planned and unplanned stoppages of the kiln don't change much over the years. The local coal Semirara from the Philippines is not always available and the quality is lower than the one from Indonesia. Anthracite from vietnam will most likely remain use as in the previously year on occasional basis.

Bulacan

Price (Php/MJ)	2006	2007	2008	2009	2010
Coal indo	0.1326	0.1327	0.1507	0.1646	0.1801

² 0.085PhP/MJ in 2005 (see annex-D F-xxPetcoke price)

page 15

(Indonesia)					
Coal semirara (Philippines)	0.0866	0.0904	0.0980	0.1069	0.1168
Anthracite (Vietnam)	0.1331	0.1389	0.1509	0.1646	0.1799

Lugait					
Price (Php/MJ)	2006	2007	2008	2009	2010
Coal indo (Indonesia)	0.1115	0.1165	0.1269	0.1389	0.1524
Coal semirara (Philippines)	0.0816	0.0851	0.0927	0.1015	0.1114
Anthracite (Vietnam)	0.1269	0.1323	0.1440	0.1575	0.1727

Davao					
Price (Php/MJ)	2006	2007	2008	2009	2010
Coal indo (Indonesia)	0.1189	0.1244	0.1358	0.1491	0.1639
Coal semirara (Philippines)	0.0870	0.0910	0.0992	0.1087	0.1194
Anthracite (Vietnam)	0.1326	0.1388	0.1517	0.1666	0.1833

The tables above show that the fuel price of coal and anthracite is very similar. However the Indonesian coal has a higher quality and it is available. Therefore we can consider that any fuel switch will be in favour of coal from Indonesia.

Regarding the price and availability analysis above, the fuel mix scenario would most likely be the same than scenario 1a but instead of petcoke, coal would be used.

Fuels	Percentage (%)	Percentage (%)	Percentage (%)
	Baseline 2	Baseline 2	Baseline 2
	Bulacan	Lugait	Davao
Coal	79.6	96.7	88.5
Anthracite	18.6	1.7	11.0
Petcoke	0.0	0.0	0.0
Heavy oil	0.9	1.5	0.5
Light oil/ Diesel	0.1	0.0	0.0
Waste oil	0.0	0.1	0.0
Industrial waste originating from fossil sources	0.8	0.0	0.0
Emission factor (tCO2/TJ)	95.09	94.33	95.08

Scenario 2 - likely evolving fuel mix portfolios

page 16

Baseline scenario 3: Fossil fuels are partially substituted with alternative fuels (i.e the proposed CDM project activity)

The third scenario is the project activity, i.e., utilization of fossil fuels plus a significant amount of alternative fuels (AF).

As there are no legal incentives nor obligations for cement companies to use alternatives fuels such as agricultural waste or sorted municipal waste, cement plants will not, most likely, shift from the use of fossil fuels to alternative fuels.

In 2004, HPHI had discussion during the annual Energy Technology Conference (ETC 2004) held in Mandaluyong city in the Philippines on the potential to develop a project activity using alternative fuels under the Clean Development Mechanism. The speakers under the CDM projects and applications' panel were consulting HPHI on the process and potential of such a project (see letter from ENPAP).

In 2005, with the incentives of potential CDM revenues, tests using agricultural by-products as alternative fuels were conducted using manual installations. Aside from rice husks tested in Bulacan, waste carbon (coconut carbon) coming from a supplier's large stockpile was tested in Davao (see letter from the environmental management bureau of Davao city).

Since the first test in Bulacan in 2005, the local and corporate AFR technical team are studying the process behaviour and technical barriers to be overcome to ensure that production losses are minimized and the quality of the clinker is not compromised. With technical support from corporate office and with investments on new alternative fuel facilities, HPHI would partially replace fossil fuels with alternative fuels, using a significant amount of biomass. With the CDM incentives, it is estimated that 15% and 3.8% of the fossil fuel requirements will be replaced by biomass and sorted MSW, respectively. The thermal substitution rate has been estimated by taking into account the technical barriers to be overcome using the tools developed by Holcim on minimizing production losses and maintaining the clinker characteristics. These estimates will be re-evaluated during the verification stage.

HPHI	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017-8
Coal	75.4 8	70.4 75	64.6 70	64.6	64.6	64.6	64.6	64.6	64.6	64.6
	0.2	.4	.4							
Anthracite	11.0	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9
Petcoke	4.10.	0.04 .1	0.04.1	0.04.1	0.04.1	0.04 .1	0.04.1	0.04.1	0.04.1	0.04 1
	0									
Heavy oil	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Light oil /Diesel	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Waste oil	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Industrial waste	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Below is HPHI's fuel mix com	position for the proposed	project activity (average	e for all 3 plants):

Agricultural waste	6.0	10.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
Sorted MSW	2.00	3.00	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8

Since the amount of fossil fuel replacement by alternative fuels is slightly different for each plant, separate emission reduction calculations are done for each plant and are given in the calculation sheet as well as in section B.6.3.

Baseline scenario selection

Option 2: Select baseline scenario through barriers analysis

Alternative scenario	Investment barriers	Technological barriers	Barriers due to prevailing practices	Other barriers
Scenario 1 and 1a	No initial capital investment required.	No technological barriers.	This is the prevailing practice	No
Scenario 2	No initial capital investment required	No technological barriers. The plant will operate with this scenario in the absence of the project activity and the emission factor is more conservative.	This is the prevailing practice	No
Scenario 3	Capital investment	A number of trials have been done (mainly in Bulacan) and are still required for the proposed project activity to optimize the feeding of alternative fuels by keeping the clinker characteristics. New facilities and upgrades of some technical components are required.	Operators are not familiar with handling and feeding of alternative fuels and specific installations have to be developed.	The use of alternative fuels reduces the production capacity.

Based on the above barriers analysis, scenario 2 is most likely to happen in the absence of the proposed project activity. Therefore, scenario 2 is selected as the baseline scenario. The data for the baseline estimation are taken from the annual technical report (ATR) of the 3 HPHI's cement plants i.e. Davao, Lugait and Bulacan.

Description of the selected baseline				
Fuels	Percentage (%)	Percentage (%)	Percentage (%)	
	Baseline 2	Baseline 2	Baseline 2	

page 18

	Bulacan	Lugait	Davao
Coal	79.6	96.7	88.5
Anthracite	18.6	1.7	11.0
Petcoke	0.0	0.0	0.0
Heavy oil	0.9	1.5	0.5
Light oil/ Diesel	0.1	0.0	0.0
Waste oil	0.0	0.1	0.0
Industrial waste originating from fossil sources	0.8	0.0	0.0
Emission factor (tCO2/TJ)	95.09	94.33	95.08

Fuels	Percentage (%)	Percentage (%)	Percentage (%)
	Baseline 2	Baseline 2	Baseline 2
	Bulacan	Lugait .	Davao
Coal	79.6	84.2	83.3
Anthracite	18.6	1.7	11.0
Petcoke	0.0	12.5	5.2
Heavy oil	0.9	1.5	0.5
Light oil/ Diesel	0.1	0.0	0.0
Waste oil	0.0	0.1	0.0
Industrial waste originating from fossil sources	0.8	0.0	0.0
Emission factor (tCO2/TJ)	95.09	94,69	95.22

B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM project activity (assessment and demonstration of additionality): >>

The tool for the demonstration and assessment of additionality version 3 has been used.

The incentives of CDM were undeniably considered in the decision to proceed with the proposed project activity. Discussions have started in October 2004 regarding the technological feasibility and the administrative procedures. In 2005, with the belief in CDM incentives, manual tests and trials have started. The Energy Efficiency Practioners Association of the Philippines who has followed the progress of HPHI in this matter has confirmed the various steps (see letter). Today, HPHI is still in the industrial testing phase as only limited installations (one conveyor) have been implemented in Bulacan and manual feeding is done in Lugait and Davao. The CEO will allow engineering works to overcome the technological barriers which have been pointed out to reach the level proposed once the project will be registered.

STEP 1. Identification of alternatives to the project activity consistent with current laws and regulations.

Sub-step 1a. Define alternatives to the project activity:

Three alternatives have been discussed above to select the most plausible baseline scenario. Alternative 2 is the most probable scenario for the following reasons: it is the prevailing practice, it is technically the most feasible scenario and it does not seek any investment. In addition, in comparison to scenario 1, it is the most specific scenario.

Alternative 3 is the project activity and it is not the most plausible scenario as there are major technical barriers, investment barriers, production losses plus maintenance issues. The barriers associated with the use of the alternative fuels proposed in the project activity are enumerated below.

Sub-step 1b. Consistency with mandatory laws and regulations:

All alternatives are in compliance with applicable laws and regulations.

Step 2. Investment analysis

Option III "Benchmark analysis" is the more relevant analysis method as the financial indicator is compared with the standard return of the company and of the market and not to a specific project type

like the Option II "Comparison analysis". The option I "Simple cost analysis" is relevant only if the project activity doesn't generate any other benefit than the CDM income and therefore doesn't apply for

the project activity.

Sub-step 2b. – Option III Apply benchmark analysis

Since scenario 1, 1a and 2 don't seek investment, the investment analysis is done only on scenario 3 which is the proposed project. A proposal of an investment plan is in study by the process engineers and has been part of the validation process to determine the prohibitive nature of the technological barriers. Here below an overview of the proposal by plant.

Bulacan					
Currency: PhP	2006	2007	2008	2009	2010+
Feeding system to SLC	16,000,000 ³				nd
(Pneumatic transport)					
Warehouse building		2,741,926	17,950,000		
Pre-process facility and		21,787,565	77,112,435		
flexible feeding system					
Fire protection system				10,000,000	

³ Remove in 2008 due to feeding issue.

Hammers mills – 2 units				1,600,000	
Technical assessment –				2,000,000	
Process evaluation to					
optimize alternative fuels					
usage					
Budget for modifications as				10,000,000	
a result of the technical					
assessment.					
Rice husk feeding system				25,000,000	
(burner)					
Replacement of burner pipe				34,000,000	
(fine feeding)					
Heavy equipment to feed				5,000,000	
rice husk					
Baler/Compactor				1,200,000	
Truck scale for weighing				5,100,000	
Plattform, mixing and			6,000,000	19,000,000	
staging area					
Shredder and storage				20,000,000	
Dumptruck			1,000,000		
Forklift			1,200,000		
Payloaders (shredded			3,200,000		
material)					
Payloaders (biomass)			1,000,000		
Total in PhP	16,000,000	24,529,491	107,462,435	132,900,000	nd

Lugait					
Currency: PhP	2006	2007	2008	2009	2010+
Storage facility			1,500,000	23,500,000	
Fire protection system				10,000,000	
Forklift to unload rice husk				1,200,000	
Pre-processing facility and		21,787,565	77,112,435		
flexible feeding system					
Technical assessment –				2,000,000	
Process evaluation to					
optimize alternative fuels					
usage					
Budget for modifications as				10,000,000	
a result of the technical					
assessment.					
Rice husk feeding system				25,000,000	
(burner)					
Hammer mills – 1 unit				8,000,000	
Baler, Compactor				1,2000,000	
Total in PhP		21,787,565	78,612,435	73,700,000	nd

page 21

Davao	1		T		
Currency: PhP	2006	2007	2008	2009	2010+
Coarse facility		1,559,000	3,491,000		
Storage area			15,000,000	23,500,000	
Fire protection system				10,000,000	
Rice husk feeding system				80,000,000	
(cleated belt)					
Payloader and forklift				5,000,000	
Technical assessment –				2,000,000	
Process evaluation to					
optimize alternative fuels					
usage					
Budget for modifications				10,000,000	
as a result of the technical					
assessment.					
Rice husk feeding system			7,000,000	8,000,000	
(burner)					
Hammers mills – 1 unit				800,000	
Shredder system for					10,000,000
MSW					
Compactor				1,200,000	
Total in PhP	0	1,559,000	11,991,000	140,500,000	10,000,000
					(nd)

In order to assess the potential investment, although post 2010 is not defined, an investment comparison analysis has been calculated with the investment plan proposal (annex B – investment plan) and the fin plan fuel forecast of 2006. The draft investment analysis shows that the proposed investment would lead to a negative IRR without CER and to an IRR of about 28% with CER. As the usual rate for investment of HPHI is 13.8%, the comparison confirms that HPHI needs the CER to overcome the barrier and go on with the installations. In any case, this value is a conservative estimation as the totality of the needed installations and process modifications are not yet finalized. The analysis will be reviewed once the project is registered and the final investment plan completed and accepted. The table below shows the summary of the IRR calculation. The details have been added in the revised PDD version 03.

assumed at \$10)

page 22

								1
2006	306	-	-	-	_	-	(306)	(306)
2007	917	-	71	(71)	-	-	(917)	(917)
2008	4'537	421	420	1	0	420	(4'116)	(3'175)
2009	7'687	887	1'011	(124)	_	887	(6'800)	(5'280)
2010	214	1'768	1'027	740	222	1'546	1'331	3'536
2011		2'171	1'027	1'144	343	1'828	1'828	4'032
2012		2'089	1'027	1'062	319	1'771	1'771	3'975
2013		1'773	1'027	746	224	1'549	1'549	3'754
2014		1'439	1'027	412	123	1'315	1'315	3'520
2015		1'085	1'027	58	17	1'068	1'068	3'272
2016		711	1'027	(316)	_	711	711	2'915
2017		315	1'027	(712)	_	315	315	2'519
2018	-1'366	(104)	1'027	(1'131)	-	(104)	1'263	4'729
IRR					-1.70%	28.47%		
	WACC 13.80	0/0					(\$3'841)	\$4'487
							(\$3'361)	\$9'089
NPV - GOVT BOND 8%							47 007	

It was assessed during the validation on site that HPHI is in the starting phase of the project activity with limited usage of biomass and non continuous feeding. The barriers are highly prohibitive as they required an optimization of the process which can only be overcome with iterative trials regarding the process as well a customized installations regarding the handling of biomass. The bottlenecks have been presented and assessed by the DOE as well as the proposition of investment. Indeed, the various steps will lead to significant investment.

Step 3. Barrier analysis

Step 3. Barrier analysis is selected

Step 3a. Identify barriers that would prevent the implementation of the type of the proposed project activity

UNFCCC

. 1.

page 23

The use of alternative fuels in the cement kiln is not yet well-established in the Philippines. Hence, this project will likely face major barriers and risks which, without the CDM benefits, would prevent HPHI from its implementation. These barriers are discussed as follows.

Technological barriers

There are mainly 2 types of technological barriers when using alternative fuels. These are the direct one, due to the feeding of the alternative fuels, and the indirect one, caused by the process in regard to keeping production losses minimum and maintaining the clinker characteristics within regulatory standards.

Using alternative fuels in a power plant to generate electricity is different from using one in a kiln. In a power plant, the alternative fuels are burned directly and the heat produced is used to generate electricity. In a cement kiln, the alternative fuels come directly in contact with the raw materials that are used to produce the clinker. In the process, the mineral components of the alternative fuels, in addition to the heat, are recovered and becomes part of the clinker. For this reason, optimizing the use of alternative fuel is a case by case study which, depending on the type of kiln used and the characteristics of the raw materials, may vary from kiln to kiln. To ensure that the clinker characteristics are not compromised, all parameters that could influence the clinker features need to be considered and solutions to mitigate whatever impacts implemented. Holcim Philippines, with the supporting tools developed by Holcim Group Support Ltd such as the fuel mix optimizer (FMO) and low grade fuel study, has identified all bottlenecks and process limitations of each cement plant for the successful implementation of the project activity (shown during validation).

The detailed analyses of the 3 plants have allowed HPHI to set up 3 specific road maps regarding the current project activity. Some of the indirect issues that have been identified and needed to be addressed for each of the 3 plants when using alternative fuels (demonstrated with the tools during validation) are: a) high variation in the quality of the main fuel and limestone, b) high percentage of calcination, c) very low burner momentum, and d) very low oxygen level at the kiln inlet. Technical solutions have been proposed, addressing each issue one at a time. As this is a learning process, a team reviews and analyzes all process conditions anew in order to fully understand the consequence of any modification or solution implemented. The appendix 4 shows the details of the bottleneck analysis as well as one example of the fuel mix optimizer.

Some of the direct technological barriers related to the use of alternative fuel are: a) the receiving area of the materials, b) safe and proper handling of the materials, c) variation in the characteristics of the materials, d) high moisture content, and e) proper AFR feeding facility to be able to reach the target reduction in fossil fuel.

In 2006, part of the project activity industrial tests, a feeding system, consisting of a hopper and conveyor to transport biomass to the calciner, was installed in Bulacan plant. Since then, many modifications have been (and are still being) made in order to optimize the system. The industrial tests show that the process of feeding alternative fuels is more challenging compared to using traditional fuels. For one, alternative fuels are not homogeneous and therefore, are technically more difficult to feed. They have lower calorific value, higher moisture content and lower density than traditional fuels. Consequently, a higher volumetric feed rate is needed, resulting in jamming and instability in the process. To attain the target thermal substitution,

the feeding and handling facility in Bulacan has to be improved. Further, a dosing system has to be installed to regulate the introduction of alternative fuels. Although Holcim Bulacan plant has a designated receiving concrete area, a covered storage will have to be considered, especially during the rainy season.

For the cement plants in Davao and Lugait, alternative fuels are for now fed manually into the kiln using basic handling equipment. A hoist is used to transport the materials from ground level to preheater and the materials are then manually fed into the "feeding point" protected by a double-flap gate. An improved feeding and handling system and covered storage area have to be set-up for each of these 2 plants also to attain to desired thermal substitution rate.

Hazards and corresponding mitigating measures have been identified and safe working procedures have been developed to ensure proper handling of alternative fuels. Improvement in the procedures and continuous training of employees on specific methods and other safety measures is ongoing.

Additional informations

The project activity involves the setting up of the indirect technical barriers as well as several new infrastructures such as feeding systems (conveyor, hoppers, etc.), covered designated area to receive the alternative fuels, controlling and monitoring devices, and safety equipment. Equipment, as well as installation and commissioning activities, entail upfront cost. Taking into account CDM incentives, HPHI has since 2006 invested around PhP1 million in AFR facilities to achieve the industrial tests. Once the project will be registered, HPHI will dedicate a team to analysis further more the direct and indirect technical barriers that have been shown and will propose solution with the related cost. Once solution will be set, an investment plan will be done and presented to the CEO as so far the CEO didn't accept any more investment without registration.

Besides direct investment, the project activity will generate indirect costs resulting from consultancy, training, monitoring, and maintenance of the equipment and cost of additional personnel.

Further, indirect costs related to losses in clinker production as a result of increased use of alternative fuels have to be taken into account as a barrier to the proposed activity. The clinker production loss is estimated using the fuel mix optimizer and was demonstrated during the validation.

Barriers due to prevailing practice

The use of a significant amount of alternative fuels in clinker production is not the current practice in the Philippines. Fossil fuels are the preferred choice and therefore the prevailing practice within the cement industry. The representative of the Philippine DNA has confirmed that it does not have any similar project for validation so far. It is aware though that another company has been considering CDM incentives.

Sub-step 3b. Show that the identified barriers would not prevent the implementation of at least one of the alternatives (except the proposed project activity)

In the case of the baseline scenario 1 and 2, they would not face the barriers associated with the proposed project activity. It is currently the prevailing practice and the technical barriers are business as usual. The table above evaluates all alternatives and shows that alternative 2 is the most probable scenario.

Step 4 Common practice analysis

Sub-step 4a. Analyze other activities similar to the proposed project activity

The use of significant amounts of alternative fuels is not the current practice in the cement manufacturing industries in the Philippines. Based on information from the Cement Manufacturers Association of the Philippines (CeMAP), coal is the major source of thermal energy in the local cement industry.

Sub-step 4b. Discuss any similar options that are occurring

With the major barriers (investment, production losses, technological issues and prevailing practice standards) and lack of incentives available, the proposed project activity or similar projects are not likely to happen without the Clean Development Mechanism incentives.

The step approach shows that the project is additional.

Impact of CDM Registration

The CDM allows HPHI to overcome the barriers related to the substitution of fossil fuels with alternative fuels.

CDM status provides many key benefits to HPHI

- Prospect of CDM revenue and decrease of the financial risk
- Significant reduction of the GHG emissions
- CDM revenue will encourage HPHI (and even other Holcim Group companies) to come up with new ideas and projects reducing GHG emissions
- Gain of experience in CDM projects

The cement industry is aware of the CO2 emissions associated with clinker production and CDM provides real incentives encouraging the industry to reduce CO2 emissions by using alternative fuels. The key benefits cited allow not only HPHI, but as well as the other Holcim Group of Companies, to dedicate financial and technical resources to overcome the barriers.

B.6. Emission reductions:

B.6.1 .	Explanation of methodological choices:	

>>

Details of the calculation choices are shown in section B.6.2 "Data and parameters available at validation" and section B.7.1 "Data and parameters monitored".

Below are the main methodological choices:

- Waste fuel and industrial waste originating from fossil fuels are part of the baseline and the related heat input and emissions are computed within the fossil fuel calculation.
- Emissions saving from reduction of on site transport of fossil fuels are not taken into account
- Emission savings from reduction in the preparation of fossil fuels are not taken into account.
- Leakages due to biomass residues that would be burned in the absence of the project activity or landfill in an uncontrolled manner are not taken into account.
- Leakage due to reduced off-site transport of fossil fuel is not taken into account.

B.6.2. Data and parameters that are available at validation:

All data used to calculate the baseline and estimate of the project activity emissions reduction are available. The baseline data are presented in this section. The project activity data (estimation) is part of the monitoring data and presented in section B.7.

The data and parameters are taken from the annual technical report (ATR), a report that each plant within the Holcim group completes and submits to the Corporate every January of the year.

Since the values applied are not always the same for the 3 plants, the abbreviation of each plant is given when necessary.

Data / Parameter:	C _{Bl}
Data unit:	Tonne
Description:	Annual production of clinker
Source of data used:	Annual technical report
Value applied:	See calculation database
Justification of the	Quantity of clinker produced.
choice of data or	
description of	Daily production monitoring based on clinker factor multiplied by weight of kiln
measurement methods	feed. Daily usage of kiln feed is obtained from kiln feed weight totalizer readings
and procedures actually	while clinker factor is obtained using a drop test.
applied :	Cross- check with automatic weight system of the cement grinding input and
	clinker sold.
	ISO 9001:2000.
Any comment:	None

Data / Parameter:	Q _{FF,BA} coal
Data unit:	Tonne
Description:	Quantity of fossil fuel (coal) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL:145,644 LG: 175,366201,448 DV:110,391117,617
Justification of the	The amount of each fossil fuel is automatically daily weighted with the weight
choice of data or	totalizer of the bin and cross-checked with the delivery and inventory.
description of	ISO 9001:2000.
measurement methods	

and procedures actually applied :	
Any comment:	None

Data / Parameter:	QFF,BA anthracite
Data unit:	Tonne
Description:	Quantity of fossil fuel (anthracite) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL:30,745 LG:3,407 DV:20,080
Justification of the	The amount of each fossil fuel is automatically daily weighted with the weight
choice of data or	totalizer of the bin and cross-checked with the delivery and inventory.
description of	ISO 9001:2000.
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	QFF,BA petcoke
Data unit:	Tonne
Description:	Quantity of fossil fuel (petcoke) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL: 0 LG: 20,4420 DV: 5,283 0
Justification of the	The amount of each fossil fuel is automatically daily weighted with the weight
choice of data or	totalizer of the bin and cross-checked with the delivery and inventory.
description of	ISO 9001:2000.
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	QFF,BA heavy oil
Data unit:	Tonne
Description:	Quantity of fossil fuel (heavy oil) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL: 1,021 LG:2,232 DV:480
Justification of the	Daily flowmeter readings and cross check with the delivery and inventory.
choice of data or	ISO 9001:2000.
description of	
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	QFF,BA light oil
Data unit:	Tonne

Description:	Quantity of fossil fuel (light oil) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL:72 LG:0 DV:0
Justification of the	Daily flowmeter readings and cross check with the delivery and inventory.
choice of data or	ISO 9001:2000.
description of	
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	QFF,BA waste oil
Data unit:	Tonne
Description:	Quantity of fossil fuel (waste oil) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL:0 LG:82 DV:0
Justification of the	Daily flowmeter readings and cross check with the delivery and inventory.
choice of data or	ISO 9001:2000.
description of	
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	QFF,BA industrial waste originating from fossil fuel
Data unit:	Tonne
Description:	Quantity of fossil fuel (industrial waste originating from fossil fuel) used in the
	baseline
Source of data used:	Annual technical report
Value applied:	BL:2,255 LG:0 DV:0
Justification of the	The amount of each fossil fuel is weighted by batch and cross check with the
choice of data or	delivery.
description of	ISO 9001:2000.
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	HV _{FF coal}
Data unit:	TJ/tonne
Description:	Lower heating value of fossil fuel (coal) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL:0.025 LG:0.026 DV:0.024
Justification of the	Laboratory analysis cross check with supplier and third party laboratory every
choice of data or	delivery. A weighted average is computed.

description of	ISO 9001:2000.
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	HV _{FF} anthracite
Data unit:	TJ/tonne
Description:	Lower heating value of fossil fuel (anthracite) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL:0.027 LG:0.027 DV:-
Justification of the	Laboratory analysis cross check with supplier and third party laboratory every
choice of data or	delivery.
description of	ISO 9001:2000.
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	HV _{FF petcoke}
Data unit:	TJ/tonne
Description:	Lower heating value of fossil fuel (petcoke) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL:- LG: 0.034- DV: 0.033-
Justification of the	Laboratory analysis cross check with supplier and third party laboratory every
choice of data or	delivery.
description of	ISO 9001:2000.
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	HV _{FF heavy oil}
Data unit:	TJ/tonne
Description:	Lower heating value of fossil fuel (heavy oil) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL:0.040 LG:0.038 DV:0.039
Justification of the	Supplier laboratory analysis every delivery.
choice of data or	
description of	
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	HV _{FF light oil}
Data unit:	TJ/tonne
Description:	Lower heating value of fossil fuel (light oil) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL:0.038 LG:- DV:-
Justification of the	Supplier laboratory analysis every delivery.
choice of data or	
description of	
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	HV _{FF} waste oil
Data unit:	TJ/tonne
Description:	Lower heating value of fossil fuel (waste oil) used in the baseline
Source of data used:	Annual technical report
Value applied:	BL: - LG:0.035 DV:-
Justification of the	Supplier laboratory analysis cross check with third party laboratory every
choice of data or	delivery.
description of	ISO 9001:2000.
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	$\mathrm{HV}_{\mathrm{FF}}$ industrial waste originating from fossil fuel
Data unit:	TJ/tonne
Description:	Lower heating value of fossil fuel (industrial waste originating from fossil fuel)
	used in the baseline
Source of data used:	Annual technical report
Value applied:	BL:0.016 LG:- DV:-
Justification of the	Third party laboratory every delivery. A weighted average is computed.
choice of data or	ISO 9001:2000.
description of	
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	EE _{FF}
Data unit:	tCO ₂ /TJ
Description:	Weighted average annual CO2 emission factor for the fossil fuel that would have
	been consumed in the baseline
Source of data used:	Annual technical report

Value applied:	BL:96.29 LG:95.95 DV:96.40
Justification of the	Specific CO ₂ emission factor from each fossil fuels come from IPCC value
choice of data or	(2006). The weighted average is computed.
description of	ISO 9001:2000.
measurement methods	
and procedures actually	
applied :	
Any comment:	None

Data / Parameter:	HC _{FF}
Data unit:	TJ/tClinker
Description:	Specific fuel consumption in the baseline
Source of data used:	Annual technical report
Value applied:	BL:0.00324 LG:0.00334 DV:0.00331
Justification of the	This value is computed.
choice of data or	The amount of each fuel is weighted and cross-checked with the amount bought.
description of	The lower heating value is fixed by laboratory analysis.
measurement methods	ISO 9001:2000.
and procedures actually	
applied :	
Any comment:	None

B.6.3 Ex-ante calculation of emission reductions:

>>

Step 1. Project heat input from alternative fuel

$$HI_{AF} = \Sigma Q_{AF} \times HV_{AF}$$

Where:

 HI_{AF} = heat input from alternative fuels (TJ/yr)

 Q_{AF} = quantity of each alternative fuel (tonnes/yr)

 HV_{AF} = lower heating value of the alternative fuel(s) used (TJ/tonne fuel).

BL	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
QAF_biomass	34,024	45,532	68,589	68,589	68,589	68,589	68,589	68,589	68,589	68,58 9	68,589
HV _{AF biomass}	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
Q _{AF_sorted} MSW	6,239	9,392	15,721	15,721	15,721	15,721	15,721	15,721	15,721	15,72 1	15,721
HV _{AF_sorted}	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
HI _{AF}	522	716	1,107	1,107	1,107	1,107	1,107	1,107	1,107	1,107	1,107

LG	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
QAF_biomass (rice husk)	18,617	37,424	56,449	56,449	56,449	56,449	56,449	56,449	56,449	56,449	56,449
HV _{AF_biomass} (rice husk)	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
Q _{AF_sorted} MSW	5,121	7,720	7,763	7,763	7,763	7,763	7,763	7,763	7,763	7,763	7,763
HV_{AF_sorted}	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
HI _{AF}	315	589	820	820	820	820	820	820	820	820	820
											I
DV	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
QAF_biomass (rice husk)	15,373	30,907	46,598	46,598	46,598	46,598	46,598	46,598	46,598	46,598	46,598
HV _{AF_biomass} (rice husk)	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
Q _{AF_sorted} MSW	4,228	6,376	6,408	6,408	6,408	6,408	6,408	6,408	6,408	6,408	6,408
HV _{AF_sorted}	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
HI_{AF}	260	486	677	677	677	677	677	677	677	677	677

Step 2. Estimation of the project specific moisture "penalty"

 $MP_y = C_{Pr,y} \times (HC_{AF} - HC_{FF})$

Where:

 MP_y = moisture penalty (TJ/yr) for year y

 $C_{Pr,y}$ = is the clinker production for year y

 HC_{AF} = is the specific fuel consumption on project case (TJ/tClinker) in year y

 HC_{FF} = is the specific fuel consumption in the baseline when only fossil fuel is used, in TJ/tClinker.

BL	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017-8
MPy	35.052	55.236	78.784	78.784	78.784	78.784	78.784	78.784	78.784	78.784
HC _{AF}	0.00326	0.00328	0.00329	0.00329	0.00329	0.00329	0.00329	0.00329	0.00329	0.00329
HC _{FF}	0.00264									

LG	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017-8
MPy	24.228	45.391	73.840	71.563	71.563	71.563	71.563	71.563	71.563	71.563
HC _{AF}	0.00335	0.00337	0.00339	0.00339	0.00339	0.00339	0.00339	0.00339	0.00339	0.00339
HC _{FF}	0.003337									

DV	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017-8	
----	------	------	------	------	------	------	------	------	------	--------	--

UNFCCC

MPy	19.299	38.772	57.974	57.974	57.974	57.974	57.974	57.974	57.974	57.974
HC _{AF}	0.00333	0.00334	0.00336	0.00336	0.00336	0.00336	0.00336	0.00336	0.00336	0.00336
HC _{FF}	0.00331									

Step 3 GHG emissions from the use of alternative fuels in kilns:

 $AF_{GHG} = \Sigma(Q_{AF} * HV_{AF} * EF_{AF})$

Where:

 AF_{GHG} = GHG emissions from alternative fuels (tCO2e/yr)

 Q_{AF} = monitored alternative fuels input in clinker production (tonnes/yr).

 HV_{AF} = heating value(s) of the alternative fuel(s) used (TJ/tonne fuel).

 EF_{AF} = emission factor(s) of alternative fuel(s) used (tCO₂e/TJ).

 CO_2 emissions from burning biomass residues are CO_2 -neutral assuming that the generation of the biomass residues occurs independently of the project activity.

 CO_2 emissions from waste originating from fossil sources in the specific case sorted MSW could be CO_2 neutral if it can be clearly demonstrated that the heat would not be used for energy purposes without the project activity.

The heating value is estimated today at 0.02TJ/t (lab analysis shown during validation). It will be reviewed when receiving sorted MSW. The IPCC 2006 estimates the emission factor of municipal solid waste (non biomass fraction) at 91.7 tCO2/TJ and tyres at 143tCO2/TJ. In order to be conservative an estimation of the potential emission from sorted MSW has been calculates with 143t CO2/TJ in the table below.

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017-8
BL	15,702	23,639	39,567	39,567	39,567	39,567	39,567	39,567	39,567	39,567
LG	12,887	19,430	19,538	19,538	19,538	19,538	19,538	19,538	19,538	19,538
DV	10,642	16,046	16,128	16,128	16,128	16,128	16,128	16,128	16,128	16,128

Step 4 Baseline GHG emissions from the fossil fuel(s) displaced by the alternative fuel(s)

 $FF_{GHG} = [(Q_{AF} \times HV_{AF}) - MP_{total}] \times EF_{FF}$

Where:

FF _{GHG}	= GHG emissions from fossil fuels displaced by the alternatives (tCO_2/yr)
$Q_{AF} \times HV_{AF}$	= total actual heat provided by all alternative fuels (TJ/yr)
MP _{total}	= total moisture penalty (TJ/yr)
$\mathrm{EF}_{\mathrm{FF}}$	= emissions factor(s) for fossil fuel(s) displaced (t CO_2/TJ).

 EF_{FF} is the estimated baseline value and would be the lowest of the following CO2 emission factors: - the weighted average annual CO2 emission factor for the fossil fuel(s) consumed and monitored ex ante during the year before the validation,

- the weighted average annual CO2 emission factor for the fossil fuel(s) consumed and monitored during the corresponding verification period (e.g. the period during which the emission reductions to be certified have been achieved),

- the weighted average annual CO2 emission factor for the fossil fuel(s) that would have been consumed according to the baseline scenario determined in section 1 and 2 of the "Additionality and baseline scenario selection".

For the estimation of the present calculation, the weighted average annual CO2 emission factor for the fossil fuels consumed and monitored ex ante during the year before the validation has been used. This value is also the weighted average annual CO2 emission factor for the fossil fuels that would have been consumed according to the baseline scenario.

BL	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
EF _{FF}	95.09	95.09	95.09	95.09	95.09	95.09	95.09	95.09	95.09	95.09	95.09
FF _{GHG}	46,261	62,863	97,749	97,749	97,749	97,749	97,749	97,749	97,749	97,749	97,749

2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
94, 69 33	94,3394,6 9	94,3394,6 9	94,33 94,69	94,33 94,69	94,33 94,69	94,33 94,69	94,33 94,69	94,33 94,69	94,33 9 4
27, <mark>573</mark> 53 4	51,4 52 151	70, 632 557	70,557 70,8 4 7	70,557 74 7					
									-

2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
05 2208	95.08 95.2	95.08 95.2	95.08 95.22	95.08 95					
95. 22 08	2	2							
23, <mark>96490</mark>	42 (10519	59 010901	58,801 58,91	58,801 <mark>58</mark>					
3	42, 610 518	58, <mark>919</mark> 801	9	9	9	9	9	9	9

Step 5. GHG emissions due to on-site transportation and drying of alternative fuels

$$\begin{split} OT_{GHG} &= OF_{AF} \times (VEF_CO_2 + VEF_CH_4 \times GWP_CH_4/1000 + VEF_N_2O \times GWP_N_2O/1000) + (FD \times FD_HV \times VEF_D) + OP_{AF} \times EF_{op} \end{split}$$

Where:

where.	
OT _{GHG}	= GHG emissions from on-site transport and drying of alternative fuels (tCO_2e/yr)
OF _{AF}	= transportation fuel used for alternative fuels on-site during the year (t/yr),
VEF_CO_2	= CO_2 emission factor for the transportation fuel (t CO_2 /tonne),
VEF_CH_4	= CH_4 emission factor for the transportation fuel (kg CH_4 /tonne),
VEF_N ₂ O	= N_2O emission factor for the transportation fuel (kg N_2O /tonne),
GWP_CH_4	= global warming potential for CH_4 (21),
GWP_N ₂ O	= global warming potential for N_2O (310),
FD	= fuel used for drying alternative fuels (t/yr) ,
FD_HV	= heating value of the fuel used for drying $(TJ/t \text{ fuel})$

page 35

VEF _D	= emission factor of the fuel used for drying (tCO_2/TJ)
OP _{AF}	= Power consumption in transporting alternative fuel (MWh)
EF _{op}	= CO_2 emission factor due to power generation (t CO_2 /MWh)

The GHG emission generated by the use of conveyors to carry the alternative fuels is computed in this section. The CO_2 emission factor due to power generation (t CO_2/MWh) is based on the tool to calculate the emission factor for an electricity system - Annex 12 EB 35 (step 6 combined margin). The data stems from the official guidebook CDM baseline construction for the electricity grids in the Philippines which has been published in 2006. No more recent data were available when writing the latest version of the PDD. The data will be updated during verification.

BL	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
OF _{AF}	35.72	47.81	72.02	72.02	72.02	72.02	72.02	72.02	72.02	72.02	72.02
FD	0	0	0	0	0	0	0	0	0	0	0
OP _{AF}	347	473	726	726	726	726	726	726	726	726	726
EF _{op}	0.531	0.531	0.531	0.531	0.531	0.531	0.531	0.531	0.531	0.531	0.531
OT _{GHG}	299	404	616	616	616	616	616	616	616	616	616
LG	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
OF _{AF}	19.55	39.30	59.27	59.27	59.27	59.27	59.27	59.27	59.27	59.27	59.27
FD	0	0	0	0	0	0	0	0	0	0	0
OP _{AF}	204	389	553	553	553	553	553	553	553	553	553
EF _{op}	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453
OT _{GHG}	155	302	440	440	440	440	440	440	440	440	440
DV	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
OF _{AF}	16.14	32.45	48.93	48.93	48.93	48.93	48.93	48.93	48.93	48.93	48.93
FD	0	0	0	0	0	0	0	0	0	0	0
OP _{AF}	169	321	456	456	456	456	456	456	456	456	456
EF _{op}	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453

Step 6. Emission savings from reduction of on-site transport of fossil fuels

364

364

364

364

364

364

364

364

 $OT_GHG_{FF} = OF_{FF} \times EF_{T CO2e}$

249

128

Where:	
OT-GHG _{FF}	= emissions from reduction of on-site transport of fossil fuels (tCO_2e)
OF_{FF}	= fuel saving from on-site transportation of fossil fuels (t/yr)
$\mathrm{EF}_{\mathrm{T}\mathrm{CO2e}}$	= emission factor of fuel used for transportation (tCO ₂ e/t fuel)

For conservativeness, the emissions savings are not computed.

364

Leakage

OT_{GHG}

Step 1. CH₄ emissions due to biomass residues that would be burned in the absence of the project

 $BB_{CH4} = Q_{AF-B} \times BCF \times CH_4F \times CH_4/C \times GWP_CH_4$

Where:	
--------	--

BB_{CH4}	= GHG emissions due to burning of biomass residues used as alternative fuel (tCO_2e/yr)
Q _{AF-B}	= amount of biomass residues used as alternative fuel that would have been burned in the
	open field in the absence of the project (t/yr)
BCF	= carbon fraction of the biomass residue (tC/t biomass) estimated on basis of laboratory
	analysis (0.30)
CH ₄ F	= fraction of the carbon released as CH_4 in open air burning (expressed as a fraction)
CH ₄ /C	= mass conversion factor for carbon to methane (16 tCH ₄ /12 tC)
GWP_CH ₄	= global warming potential of methane (21).
_	

Since the Republic Act 9003 or the Ecological Solid Waste Management Act of 2000 prohibits the open burning of all agricultural waste in open air, the related GHG emission reductions are not claimed.

Step 2. Calculate the CH₄ emissions due to anaerobic decomposition of biomass residues at landfills

$$LW_{CH4,y} = \mathbf{\phi} \times 16/12 \times F \times DOC_{f} \times MCF \times \Sigma \Sigma QAFL_{j,x} \times DOC_{j} \times (1 - e^{-kj}) \times e^{-kj} \times NFL \times GWP_{CH4}$$

Where:

Willer C.	
LW _{CH4,y}	= Baseline GHG emissions due to anaerobic decomposition of biomass residues in landfills during the year y (tCO2e/yr)
QAFL _{j,x}	= amount of biomass residues of type j used as alternative fuel that would be landfilled in
	the absence of the project in the year $x (t/yr)$
Φ	= Model correction factor (default 0.9) to correct for the model-uncertainties
F	= Fraction of methane in the landfill gas (default value 0.5)
DOCi	= Percent of degradable organic carbon (by weight) in the biomass type j
$\mathrm{DOC}_{\mathrm{f}}$	= Fraction of DOC dissimilated to landfill gas (default value 0.77)
MCF	= Methane Correction Factor (fraction) (default value 0.4 for unmanaged site)
\mathbf{k}_{j}	= Decay rate for the biomass residue stream type j (default value 0.023)
j	= is biomass residue type distinguished into the biomass residue categories
X	= year during the crediting period: x runs from the first year of the first crediting period
	(x=1) to the year for which emissions are calculated $(x=y)$
у	= year for which LFG emissions are calculated
NFL	= the non-flared portion of the landfill gas produced (%) (100%)
GWP _{CH4}	= Global warming potential valid for the relevant commitment period

For conservativeness, the related GHG reductions are not claimed.

Step 3. Calculate emissions from off-site transport of alternative and fossil fuels

$$\begin{split} LK_{trans} &= LK_{AF} - LK_{FF} \\ LK_{AF} &= (Q_{AF}/CT_{AF}) \times D_{AF} \times EF_{CO2e}/1000 \\ LK_{FF} &= (RQ_{FF}/CT_{FF}) \times D_{FF} \times EF_{CO2e}/1000 \end{split}$$

Where:

- LK_{trans} = leakage from transport of alternative fuel less leakage due to reduced transport of fossil fuels (tCO₂/yr)
- LK_{AF} = leakage resulting from transport of alternative fuel (tCO₂/yr)
- LK_{FF} = leakage due to reduced transport of fossil fuels (tCO₂/yr)
- Q_{AF} = quantity of alternative fuels (tonnes)
- CT_{AF} = average truck or ship capacity (tonnes/truck or ship)
- D_{AF} = average round-trip distance between the alternative fuels supply sites and the cement plant sites (km/truck or ship)
- RQ_{FF} = quantity of fossil fuel (tonnes) that is reduced due to consumption of alternative fuels estimated as:
- CT_{FF} = average truck or ship capacity (tonne /truck or ship)
- D_{FF} = average round-trip distance between the fossil fuels supply sites and the cement plant sites (km/truck or nautical mile/ship)
- EF_{CO2e} = emission factor from fuel use due to transportation (kg CO₂e/km) estimated as:
- $EF_{CO2e} = EF_{T CO2} + (EF_{T CH4} \times 21) + (EF_{T N2O} \times 310)$

Where:

- $EF_{T CO2}$ = emission factor of CO₂ in transport (kg CO₂/km)
- $EF_{T CH4}$ = emission factor of CH_4 in transport (kg CH_4 /km)
- $EF_{T N2O}$ = emission factor of N₂O in transport (kg N₂O/km)
- 21 and 310 are the Global Warming Potential (GWP) of CH4 and N2O respectively

To be conservative, leakage due to reduced transport of fossil fuel is not taken into account.

BL	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
QAF biomass	34,024	45,532	68,589	68,589	68,589	68,589	68,589	68,589	68,589	68,589	68,589
CT _{AF biomass}	10	10	10	10	10	10	10	10	10	10	10
D _{AF biomass}	80	80	80	80	80	80	80	80	80	80	80
LK _{AF biomass}	302	404	608	608	608	608	608	608	608	608	608
QAF sorted MSW	6,239	9,392	15,721	15,721	15,721	15,721	15,721	15,721	15,721	15,721	15,721
CT _{AF} _sorted MSW	5	5	5	5	5	5	5	5	5	5	5
D _{AF} sorted MSW	80	80	80	80	80	80	80	80	80	80	80
LK _{AF_sorted} MSW	111	166	279	279	279	279	279	279	279	279	279
LK _{AF}	412	570	887	887	887	887	887	887	887	887	887
LK _{trans}	412	570	887	887	887	887	887	887	887	887	887

LG		2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Q _{AF biomass}	1	8,617	37,424	56,449	56,449	56,449	56,449	56,449	56,449	56,449	56,449	56,449
CT _{AF biomass}		10	10	10	10	10	10	10	10	10	10	10
D _{AF biomass}		318	318	318	318	318	318	318	318	318	318	318
LK _{AF biomass}		656	1,318	1,989	1,989	1,989	1,989	1,989	1,989	1,989	1,989	1,989
QAF sorted MS		5,121	7,720	7,763	7,763	7,763	7,763	7,763	7,763	7,763	7,763	7,763
CT _{AF_sorted}		5	5	5	5	5	5	5	5	5	5	5
D _{AF} sorted MS	W	160	160	160	160	160	160	160	160	160	160	160
LK _{AF_sorted} MSW		182	274	275	275	275	275	275	275	275	275	275
LK _{AF}		837	1,592	2,264	2,264	2,264	2,264	2,264	2,264	2,264	2,264	2,264
LK _{trans}		837	1,592	2,264	2,264	2,264	2,264	2,264	2,264	2,264	2,264	2,264
DV	200		2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Q _{AF biomass}	15,3		0,907	46,598	46,598	46,598	46,598	46,598	46,598	46,598	46,598	46,598
CT _{AF biomass}	10		10	10	10	10	10	10	10	10	10	10
D _{AF biomass}	400		400	400	400	400	400	400	400	400	400	400
LK _{AF biomass}	681	1	1,370	2,065	2,065	2,065	2,065	2,065	2,065	2,065	2,065	2,065
Q _{AF_sorted} MSW	4,22	28 (6,376	6,408	6,408	6,408	6,408	6,408	6,408	6,408	6,408	6,408
CT _{AF_sorted}	5		5	5	5	5	5	5	5	5	5	5
D _{AF_sorted} MSW	40)	40	40	40	40	40	40	40	40	40	40
LK _{AF_sorted} MSW	37	,	57	57	57	57	57	57	57	57	57	57
LK _{AF}	719	9	1,426	2,122	2,122	2,122	2,122	2,122	2,122	2,122	2,122	2,122
LK _{trans}	719		1,426	2,122	2,122	2,122	2,122	2,122	2,122	2,122	2,122	2,122

Step 4. Emissions from off-site drying (and preparing) of alternative fuels

 $GHG_{PAFO} = FD_{AFO} \times HV_{FDAFO} \times EFF_{DAFO} + PD_{AFO} \times EF_{pO}$

Where:

- GHG_{PAFO} = GHG emissions that could be generated during the preparation of alternative fuels outside the project site (tCO₂/yr)
- FD_{AFO} = fuel used in drying of alternative fuels outside the project site (t/yr)
- HV_{FDAFO} = heating value of fuel used for drying alternative fuels outside the project site (TJ /tonne)
- EFF_{DAFO} = emission factor for the fuel used for drying of alternative fuels outside the project site (tCO₂/TJ)
- PD_{AFO} = power consumption in drying the alternative fuels (MWh/yr) outside the project site
- $EF_{pO} = CO_2$ emission factor due to power generation outside the project where the drying of

page 39

alternative fuels takes place.

A small amount of the agricultural waste is shredded in Lugait and therefore PD_{AFO} is replaced by power consumption (MWh/yr) used to prepare the alternative fuels outside the project site.

Lugait	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
PD _{AFO}	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
EF _{pO}	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453
GHG _{PAFO}	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09

page 40

Emission Reductions

Total emission reductions are given by the following formula:

 $\begin{array}{ll} AF_{ER} = FF_{GHG} - AF_{GHG} - OT_{GHG} - LK_{trans} + OT_GHGFF + BB_{CH4} + LW_{CH4,y} - GHG_{PAFO} \\ \\ Where: \\ FF_{GHG} & = GHG \ emissions \ from \ fossil \ fuels \ displaced \ by \ the \ alternatives \ (tCO_2/yr) \\ AF_{GHG} & = GHG \ emissions \ from \ alternative \ fuels \ (tCO_2e/yr) \\ OT_{GHG} & = GHG \ emissions \ from \ on-site \ transport \ and \ drying \ of \ alternative \ fuels \ (tCO_2e/yr) \\ LK_{trans} & = \ leakage \ from \ transport \ of \ alternative \ fuel \ less \ leakage \ due \ to \ reduced \ transport \ of \ fossil \ fuels \ (tCO_2/yr) \\ OT-GHGFF & = \ emissions \ from \ reduction \ of \ on-site \ transport \ of \ fossil \ fuels \ (tCO_2e) \\ \end{array}$

 BB_{CH4} = GHG emissions due to burning of biomass residue that is used as alternative fuel (tCO₂e/yr)

LW_{CH4,y} = baseline GHG emissions due to anaerobic decomposition of biomass residues at landfills (tCO₂e/yr)

 $GHG_{PAFO} = GHG$ emissions that could be generated during the preparation of alternative fuels outside the project site (tCO₂/yr)

BL	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
FF _{GHG}	46,261	62,863	97,749	97,749	97,749	97,749	97,749	97,749	97,749	97,749	97,749
AF _{GHG}	0	0	0	0	0	0	0	0	0	0	0
OT _{GHG}	299	404	616	616	616	616	616	616	616	616	616
LKtrans	412	570	887	887	887	887	887	887	887	887	887
OT- GHG _{FF}	0	0	0	0	0	0	0	0	0	0	0
BB _{CH4}	0	0	0	0	0	0	0	0	0	0	0
LW _{CH4,y}	0	0	0	0	0	0	0	0	0	0	0
GHG _{PAFO}	0	0	0	0	0	0	0	0	0	0	0
AF _{ER}	45,550	61,888	96,246	96,246	96,246	96,246	96,246	96,246	96,246	96,246	96,246

LG	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
FF _{GHG}	27, 573	51, <mark>452</mark>	70, <mark>6325</mark>	70,5577	7 0,5 57 7	70,557	70,557	70,557	70,557	70,557	70,557
	534	151	57	0,847	0,847	70,847	70,847	70,847	70,847	70,847	70,847
AF _{GHG}	0	0	0	0	0	0	0	0	0	0	0
OT _{GHG}	155	302	440	440	440	440	440	440	440	440	440
LKtrans	837	1,592	2,264	2,264	2,264	2,264	2,264	2,264	2,264	2,264	2,264
OT-	0	0	0	0	0	0	0	0	0	0	0
GHG _{FF}	0	0	0	0	0	0	0	0	0	0	0
BB _{CH4}	0	0	0	0	0	0	0	0	0	0	0
LW _{CH4,y}	0	0	0	0	0	0	0	0	0	0	0
GHG _{PAFO}	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
AFER	26, 580	49, 558	67, <mark>9278</mark>	67,853 6	67,853 6	67,853	67,853	67,853	67,853	67,853	67,853
	541	257	53	8,143	8,143	68,143	68,143	68,143	68,143	68,143	68,143

DV	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
FF _{GHG}	22, 964	42, 610	58, <mark>9198</mark>	58,801 5	58,801 5	58,801	58,801	58,801	58,801	58,801	58,801
	903	518	01	8,919	8,919	58,919	58,919	58,919	58,919	58,919	58,919
AF _{GHG}	0	0	0	0	0	0	0	0	0	0	0
OT _{GHG}	128	249	364	364	364	364	364	364	364	364	364
LKtrans	719	1,426	2,122	2,122	2,122	2,122	2,122	2,122	2,122	2,122	2,122
OT-	0	0	0	0	0	0	0	0	0	0	0
GHG _{FF}	0	0	0	0	0	0	0	0	0	0	0
BB _{CH4}	0	0	0	0	0	0	0	0	0	0	0
LW _{CH4,y}	0	0	0	0	0	0	0	0	0	0	0
GHG _{PAFO}	0	0	0	0	0	0	0	0	0	0	0
AF _{ER}	22, <mark>117</mark>	40, <mark>934</mark>	56, <mark>4343</mark>	56,316 5	56,316 <mark>5</mark>	56,316	56,316	56,316	56,316	56,316	56,316
	056	842	16	6,43 4	6,43 4	56,434	56,434	56,434	56,434	56,43 4	56,43 4

B.6.4 S	ummary of the ex-ant	e estimation of emission	on reductions:	
>> Year	Estimation of project activity emissions	Estimation of baseline emissions	Estimation of leakage	Estimation of overall emission reductions
	(tonnes of CO2 e)	(tonnes of CO2 e)	(tonnes of CO2 e)	(tonnes of CO2 e)
Year A	738	121, <mark>851629</mark>	-2,643	118, <mark>470248</mark>
Year B	1,149	18 6,2485,938	-4,290	180, <mark>808499</mark>
Year C	1,420	227, <mark>389107</mark>	-5,272	220, 697414
Year D	1,420	227,107 227,515	-5,272	220,414 220,822
Year E	1,420	227,107 227,515	-5,272	220,414 220,822
Year F	1,420	227,107 227,515	-5,272	220,414 220,822
Year G	1,420	227,107 227,515	-5,272	220,414 220,822
Year H	1,420	227,107 227,515	-5,272	220,414 220,822
Year I	1,420	227,107 227,515	-5,272	220,414 220,822
Year J	1,420	227,107 227,515	-5,272	220,414 220,822
Total (tonnes of CO ₂ e)	13,249	2, 128 124, 092 422	-49,112	2, 065 062, 731 061

B.7 Application of the monitoring methodology and description of the monitoring plan:

B.7.1 Data and parameters monitored:

All data used to calculate the project activity emissions reduction are available at verification stage. The values of data applied for each year of the crediting period are reported either automatically into the SAP system (global computerized system) or recorded in a logbook. Depending on the value, the record is done in continuous, daily or monthly. The measurement interval is mentioned in the table below under the description of the measurement method. Most of the data are then reported in the Annual Technical Report (ATR), which is the official document controlled by the corporate. Any additional information which is not in the ATR will be collected in a logbook. In the case of any erroneous measurement, a note will be done in the logbook and/or will be reported in the ATR under the section "comment".

The values which stem from external sources (for example values coming from IPCC) will be updated according to the source's publication. The data stemming from HPHI transport database and from geographical parameters will be updated, if needed, throughout the duration of the project activity.

All HPHI cement plants are ISO 9001:2000 and ISO 14001 accredited. Therefore, the uncertainty level of the data is relatively low. The quality control (QC) and quality assurance (QA) also includes cross-checking of data from other reports within the Holcim Group. The reliability and accuracy of the data depends on the equipment used. The equipment are subject to regular maintenance and calibration and can be validated during the verification stage. The monitoring data will be kept for at least 2 years after the end of the crediting period.

Most of the values applied for the purpose of calculating expected emission reductions are defined in section B.6.3 Ex-ante calculation of emission reductions.

Data / Parameter:	QAF biomass								
Data unit:	Tonne	Tonne							
Description:	Quantity of alte	Quantity of alternative fuel (rice husk)							
Source of data to be	Annual technic	Annual technical report and project activity monitoring report							
used:									
Value of data applied									
for the purpose of	Years	Bulacan	Lugait	Davao					
calculating expected	2008	34,024	18,617	15,373					
emission reductions in	2009	45,532	37,424	30,907					
section B.5	2010-2018	68,589	56,449	46,598					
Description of	The amount of each product is weighed on delivery on the truck weighing scale								
measurement methods	(SAP) and cross	s-checked with	the supplier's b	ills.					

Step 1 Monitoring heat input from alternative fuels

and procedures to be	In the next years (potentially 2008-09), the amount of each product will most
applied:	likely be weighed in the same manner and cross-checked with the delivery (SAP).
QA/QC procedures to	ISO 9001:2000
be applied:	
Any comment:	Any other biomass that could be used during the project activity will be monitored
-	the same way than the rice husk.

Data / Parameter:	QAF sorted MSW								
Data unit:	Tonne								
Description:	Quantity of alter	Quantity of alternative fuel (sorted municipal solid waste)							
Source of data to be	Annual technica	Annual technical report and project activity monitoring report							
used:									
Value of data applied									
for the purpose of	Years	Bulacan	Lugait	Davao					
calculating expected	2008	6,239	5,121	4,228					
emission reductions in	2009	9,392	7,720	6,376					
section B.5	2010-2018	15,721	7,763	6,408					
Description of	The amount of e	each product is v	weighed on del	livery on the truck	weighing scale				
measurement methods	(SAP) and cross	-checked with t	he supplier's b	oills.					
and procedures to be	In the next years	(potentially 20	08-09), the an	nount of each prod	uct will most				
applied:	likely be weighe	d in the same m	anner and cros	ss-checked with the	e delivery (SAP).				
QA/QC procedures to	ISO 9001:2000								
be applied:									
Any comment:	The common pra	actice (burn wit	hout energy pu	urpose) will be che	cked and if it is				
	not the case at the	ne time of verifi	cation, the rel	lated emissions wil	l be taken into				
	account (see pag	ge 27 of the PDI	D).						

Data / Parameter:	HV _{AF biomass}							
Data unit:	TJ/tonne fuel							
Description:	Lower heating v	lower heating value of the alternative fuels (rice husk)						
Source of data to be	Annual technica	Annual technical report and project activity monitoring report						
used:								
Value of data applied								
for the purpose of	Years	Bulacan	Lugait	Davao				
calculating expected	2008-2018	0.012	0.012	0.012				
emission reductions in								
section B.5								
Description of		C		atory analysis using	·			
measurement methods				third party. Monthl	2 2			
and procedures to be				sion factor of rice h				
applied:	determined using chemical analysis by a third party accredited laboratory.							
QA/QC procedures to	ISO 9001:2000							
be applied:								

page 44

Any comment:	None							
Data / Parameter:	HV _{AF_sorted MSW}	IV _{AF sorted MSW}						
Data unit:	TJ/tonne fuel							
Description:	Lower heating va	alue of the alter	mative fuels (se	orted MSW)				
Source of data to be	Annual technical	l report and pro	ject activity m	onitoring report				
used:								
Value of data applied					_			
for the purpose of	Years	Bulacan	Lugait	Davao				
calculating expected	2008-2018	0.02	0.02	0.02				
emission reductions in		•						
section B.5								
Description of	The lower heating	g value is deter	rmined by labo	ratory analysis usin	g a bomb			
measurement methods	calorimeter and	result is cross-o	checked with a	third party. Monthly	y analysis will be			
and procedures to be	conducted. The	present estimati	on of the emiss	sion factor of sorted	MSW has been			
applied:	determined using	g chemical anal	ysis by a third	party accredited lab	ooratory.			
QA/QC procedures to	ISO 9001:2000							
be applied:								
Any comment:	None							

Data / Parameter:	HI _{AF}						
Data unit:	TJ/y						
Description:	Heat input from	n alternative fu	els				
Source of data to be used:	Annual technic	Annual technical report and project activity monitoring report					
Value of data applied							
for the purpose of	Years	Bulacan	Lugait	Davao			
calculating expected	2008	522	315	260			
emission reductions in	2009	716	589	486			
section B.5	2010-2018	1,107	820	677]		
Description of measurement methods and procedures to be applied:	Compute						
QA/QC procedures to be applied:	ISO 9001:2000)					
Any comment:	None						

Step 2

Monitoring project specific moisture penalty

Data / Parameter:	C _{Pry}
Data unit:	Tonne

Description:	Annual clinker production
Source of data to be	Annual technical report and project activity monitoring report
used:	
Value of data applied	
for the purpose of	See calculation database
calculating expected	
emission reductions in	
section B.5	
Description of	Quantity of clinker produced.
measurement methods	
and procedures to be	Weighed and cross-checked with the clinker content and merchandise sold.
applied:	
QA/QC procedures to	ISO 9001:2000
be applied:	
Any comment:	None

Data / Parameter:	MPy						
Data unit:	TJ/y	TJ/y					
Description:	Moisture penal	ty for year y					
Source of data to be	Annual technic	al report and p	roject activity m	onitoring report			
used:							
Value of data applied					_		
for the purpose of	Years	Bulacan	Lugait	Davao			
calculating expected	2008	35.052	24.228	19.299			
emission reductions in	2009	55.236	45.391	38.772]		
section B.5	2010-2018	78.784	73.840	57.974			
Description of measurement methods and procedures to be applied:	Compute with	fuel mix optimi	zer tool.				
QA/QC procedures to be applied:	ISO 9001:2000)					
Any comment:	None						

Data / Parameter:	HC _{AF,y}
Data unit:	TJ/t clinker
Description:	Specific fuel consumption in project case in year y
Source of data to be	Annual technical report and project activity monitoring report
used:	

page 46

Value of data applied	_				
for the purpose of	Years	Bulacan	Lugait	Davao	
calculating expected	2008	0.00326	0.00335	0.00333	
emission reductions in	2009	0.00328	0.00337	0.00334	
section B.5	2010-2018	0.00329	0.00339	0.00336	
Description of measurement methods and procedures to be	Compute				
applied:					
QA/QC procedures to	ISO 9001:2000				
be applied:					
Any comment:	None				

Step 3

Monitoring GHG emissions from the use of alternative fuels in kilns

Data / Parameter:	EFAF					
Data unit:	tCO2e/TJ					
Description:	Emission factor	of alternative fu	el used			
Source of data to be	Annual technica	l report and proj	ect activity mo	onitoring report		
used:						
Value of data applied					_	
for the purpose of	Years	Bulacan	Lugait	Davao		
calculating expected	2008-2018	0	0	0		
emission reductions in					_	
section B.5						
Description of	IPCC					
measurement methods						
and procedures to be						
applied:						
QA/QC procedures to	ISO 9001:2000					
be applied:						
Any comment:	GHG emissions from alternative fuels are zero in the proposed project activity.					
	Waste oil and industrial waste originating from fossil fuel are calculated with the					
	fossil fuel emissions (emissions are taken into account) since they are integrated in					
	the baseline.					
	The common practice (burn without energy purpose) will be checked and if it is					
	not the case at the time of verification, the related emissions will be taken into					
	account (see pag	ge 27 of the PDD).			

Data / Parameter:	AF _{GHG}
Data unit:	tCO2e/y
Description:	GHG emissions from alternative fuels

page 47

Source of data to be used:	Annual technical report and project activity monitoring report				
Value of data applied for the purpose of calculating expected	Years 2008-2018	Bulacan 0	Lugait 0	Davao 0	
emission reductions in section B.5					
Description of measurement methods and procedures to be applied:	-				
QA/QC procedures to be applied:	ISO 9001:2000				
Any comment:	Waste oil and in	ndustrial waste	e originating from		project activity. alculated with the ey are integrated in

Step 4

Monitoring baseline GHG emissions from the fossil fuels displaced by the alternative fuels

Data / Parameter:	EE _{FF,y}				
Data unit:	tCO2/TJ				
Description:	Weight average	annual CO2 emi	ssion factor fo	r fossil fuel consun	ned and
	monitored during	g the correspond	ing verification	n period	
Source of data to be	Annual technica	l report and proj	ect activity mo	nitoring report	
used:					
Value of data applied		1	1		7
for the purpose of	Years	Bulacan	Lugait	Davao	
calculating expected	2008-2018	95.09	94. 69 33	95. 22 08	
emission reductions in	(estimation)				
section B.5		d be the lowest (
			•	annual CO2 emiss	
	the fossil fuels c	onsumed and mo	onitored during	the 3 years prior t	o the project
	and				
	•	÷		actor for the fossil	
		e 1	÷	ation period (e.g. tl	he period during
	which the emissi	on reductions to	be certified ha	we been achieved)	
Description of	Compute				
measurement methods					
and procedures to be					
applied:					
QA/QC procedures to	ISO 9001:2000				
be applied:					

page 48

Any comment:	None

Step5

Monitoring GHG emissions due to on site transportation and drying of alternative fuels

Data / Parameter:	OF AF biomass					
Data unit:	t/y					
Description:	Transportation f	fuel used for a	Iternative fuels	(rice husk) on site	during the year	
Source of data to be	Annual technica	l report and p	roject activity m	ionitoring report		
used:						
Value of data applied						
for the purpose of	Years	Bulacan	Lugait	Davao		
calculating expected	2008	35.72	19.55	16.14		
emission reductions in	2009 47.81 39.30 32.45					
section B.5	2010-2018	72.02	59.27	48.93		
Description of	The amount of f	uel (litre) used	d per day will be	e reported by the g	asoline station for	
measurement methods	some days and a	n estimation v	will be done over	r the year (inside t	he plant).	
and procedures to be						
applied:						
QA/QC procedures to	IS0 9002					
be applied:						
Any comment:	Rice husk is har	dled with a bo	obcat to the hop	per.		

Data / Parameter:	OT _{GHG} transportation					
Data unit:	tCO2/y					
Description:	GHG emissions	from on site t	ransport of alter	mative fuels		
Source of data to be	Project activity	monitoring rep	port			
used:						
Value of data applied						
for the purpose of	Years	Bulacan	Lugait	Davao		
calculating expected	2008	299	155	128		
emission reductions in	2009	404	302	249		
section B.5	2010-2018	616	440	364		
				•		
Description of	Compute					
measurement methods	-					
and procedures to be						
applied:						
QA/QC procedures to	ISO 9001:2000	ISO 9001:2000				
be applied:						
Any comment:	None					
Data / Parameter:	OP _{AF}					

Data unit:	MWh/y					
Description:	Electricity const conveyors.	Electricity consumption from on site alternative fuels transportation with conveyors.				
Source of data to be used:	Project activity	monitoring rep	port			
Value of data applied						
for the purpose of	Years	Bulacan	Lugait	Davao		
calculating expected	2008	347	204	169		
emission reductions in	2009	473	389	321		
section B.5	2010-2018	726	553	457		
Description of	· · ·			ter and either autor	•	
measurement methods		•	•	llations. In any cas		
and procedures to be	conservative, th	conservative, the maximum theoretical (capacity of the motors) value could also				
applied:	be used.					
QA/QC procedures to	ISO 9001:2000					
be applied:						
Any comment:	None					

Data / Parameter:	EF _P
Data unit:	tCO2/ MWh
Description:	Emission factor for electricity used
Source of data to be used:	Tool to calculate the emission factor for an electricity system - Annex 12 EB35 (step 6 combined margin) using published data stemming from the CDM baseline construction for the electricity grids in the Philippines, version 2006.
Value of data applied	Bulacan (Luzon -Viyasay grid): 0.531 tCO ₂ /MWh
for the purpose of	Lugait and Davao (Mindanao grid): 0.453 tCO ₂ /MWh
calculating expected	
emission reductions in	
section B.5	
Description of	None
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	none
be applied:	
Any comment:	None

Data / Parameter:	OT _{GHG} conveyor
Data unit:	tCO2/y
Description:	GHG emissions from on site electricity consumption for alternative fuels
	transportation with conveyors.
Source of data to be	Project activity monitoring report
used:	
Value of data applied	

page 50

for the purpose of	Years	Bulacan	Lugait	Davao	
calculating expected	2008	184	93	76	
emission reductions in	2009	251	176	145	
section B.5	2010-2018	386	251	207	
				·	
Description of measurement methods and procedures to be	Compute				
applied:					
QA/QC procedures to	ISO 9001:2000				
be applied:					
Any comment:	None				

Data / Parameter:	OT _{GHG}					
Data unit:	tCO2/y					
Description:	GHG emissions	from on site th	ransport and dry	ying of alternative fu	iels	
Source of data to be	Project activity	monitoring rep	oort			
used:						
Value of data applied					_	
for the purpose of	Years	Bulacan	Lugait	Davao		
calculating expected	2008	299	155	128		
emission reductions in	2009	404	302	249		
section B.5	2010-2018	616	440	364		
Description of	Compute					
measurement methods						
and procedures to be						
applied:						
QA/QC procedures to	ISO 9001:2000					
be applied:						
Any comment:	None					

Step 6

Monitoring emission saving from reduction of on site transport of fossil fuels Not computed for conservativeness.

Leakage

Step 1

Monitoring CH4 emissions due to biomass residues that would be burned in the absence of the project

Not computed for conservativeness.

UNFCCC

Step 2

Monitoring CH4 emissions due to anaerobic decomposition of biomass residues at landfills Not computed for conservativeness.

Step 3 Monitoring emissions from off-site transport of alternative and fossil fuels

Data / Parameter:	CT _{AF biomass}	CT _{AF biomass}			
Data unit:	Tonnes/truck				
Description:	Average truck ca	apacity (rice h	usk)		
Source of data to be used:	Weighting post of	latabase (SAI	P) and transport	ers	
Value of data applied					
for the purpose of	Years	Bulacan	Lugait	Davao	
calculating expected	2008-2018	10	10	10	
emission reductions in					
section B.5					
Description of	Weighted and cr	oss-checked v	vith bills.		
measurement methods					
and procedures to be					
applied:					
QA/QC procedures to	ISO 9001:2000				
be applied:					
Any comment:	none				

Data / Parameter:	D _{AF biomass}				
Data unit:	Km/truck				
Description:		Maximum round trip distance between the alternative fuel supply sites (rice husk) and the cement plant sites			
Source of data to be used:	Geographical da	Geographical data			
Value of data applied					
for the purpose of	Years	Bulacan	Lugait	Davao	
calculating expected	2008-2018	80	318	400	
emission reductions in section B.5					
Description of	Geographical da	ta cross-check	ed with transpo	orters	
measurement methods			*		
and procedures to be					
applied:					
QA/QC procedures to	ISO 9001:2000				
be applied:					
Any comment:	Based on current	t suppliers, to	be updated dur	ing verification.	

Data / Parameter:	LK _{AF biomass}				
Data unit:	tCO2/y				
Description:	Leakage resultir	ng from transp	ort of alternativ	e fuel (rice husk)	
Source of data to be	Project activity	database			
used:					
Value of data applied		-			
for the purpose of	Years	Bulacan	Lugait	Davao	
calculating expected	2008	302	656	681	
emission reductions in	2009	404	1,318	1,370	
section B.5	2010-2018	608	1,989	2,065	
Description of	Compute				
measurement methods					
and procedures to be					
applied:					
QA/QC procedures to	ISO 9001:2000				
be applied:					
Any comment:	none				

Data / Parameter:	CT _{AF} sorted MSW	CT _{AF} sorted MSW				
Data unit:	Tonnes/truck					
Description:	Average truck of	capacity (sorte	d MSW)			
Source of data to be	Weighting post	database (SAI	P) cross-checked	d with transporters		
used:						
Value of data applied						
for the purpose of	Years	Bulacan	Lugait	Davao		
calculating expected	2008-2018	5	5	5		
emission reductions in						
section B.5						
Description of	Weighed and cr	oss-checked w	vith bill.			
measurement methods						
and procedures to be						
applied:						
QA/QC procedures to	ISO 9001:2000					
be applied:						
Any comment:	None					

Data / Parameter:	DAF sorted MWS				
Data unit:	Km/truck				
Description:	Average round trip distance between the alternative fuels supply sites (sorted MSW) and the cement plant sites				
Source of data to be	Geographical dat	a			
used:					
Value of data applied					
for the purpose of	Years	Bulacan	Lugait	Davao	

calculating expected emission reductions in section B.5	2008-2018	80	160	40	
Description of measurement methods and procedures to be applied:	Geographical d	ata cross-ch	ecked with transp	porters	
QA/QC procedures to be applied:	ISO 9001:2000				
Any comment:	None				

Data / Parameter:	LKAF sorted MSW					
Data unit:	tCO ₂ /y					
Description:	Leakage resultin	ng from transp	ort of alternativ	e fuels (sorted MSW)	
Source of data to be	Project activity	database				
used:						
Value of data applied						
for the purpose of	Years	Bulacan	Lugait	Davao		
calculating expected	2008	111	182	37		
emission reductions in	2009	166	274	57		
section B.5	2010-2018	279	275	57		
Description of	Compute					
measurement methods						
and procedures to be						
applied:						
QA/QC procedures to	ISO 9001:2000					
be applied:						
Any comment:	None					

Data / Parameter:	LK _{AF}				
Data unit:	tCO ₂ /y				
Description:	Leakage resulti	ng from transp	ort of all alterna	tive fuels	
Source of data to be	Project activity	database			
used:					
Value of data applied					
for the purpose of	Years	Bulacan	Lugait	Davao	
calculating expected	2008	412	837	719	
emission reductions in	2009	570	1,592	1,426	
section B.5	2010-2018	887	2,264	2,122	
Description of	Compute				
measurement methods					
and procedures to be					
applied:					

page 54

QA/QC procedures to be applied:	ISO 9001:2000)				
Any comment:	None					
	1					
Data / Parameter:	LK _{trans}					
Data unit:	tCO ₂ /y					
Description:	Leakage resulti transport of fos		ort of alternativ	e fuels less leakage o	due to reduced	
Source of data to be used:	Project activity database					
Value of data applied						
for the purpose of	Years	Bulacan	Lugait	Davao		
calculating expected	2008	412	837	719		
emission reductions in	2009	570	1,592	1,426		
section B.5	2010-2018	887	2,264	2,122]	
Description of	Compute					
measurement methods						
and procedures to be applied:						
QA/QC procedures to	ISO 9001:2000					
be applied:			. .	<u> </u>	2.1.1	
Any comment:			ue to reduction of	of transport of fossil	fuels is not	
	taken into acco	unt.				

Step 4

Monitoring emissions from off site drying (or preparing) of alternatives fuels

Data / Parameter:	QAF prepared off site				
Data unit:	tonne				
Description:	Quantity of alter	mative fuels (rice husk) prepa	res off site	
Source of data to be	Project activity of	latabase and s	suppliers databa	se	
used:					
Value of data applied					
for the purpose of	Years	Bulacan	Lugait	Davao	
calculating expected	2008-2018	0	800	0	
emission reductions in					
section B.5					
Description of	Weighting datab	Weighting database (SAP) cross-checked with suppliers' bills			
measurement methods					
and procedures to be					
applied:					
QA/QC procedures to	ISO 9001:2000				
be applied:					
Any comment:	Only 1 supplier	in Lugait is p	reparing (shredd	ling) the materiel.	

Data / Parameter:	PP _{AF} prepared off sit	te				
Data unit:	MWh/y					
Description:	Electricity used	for preparatio	n of alternative	fuel (rice husk) shre	ds off site	
Source of data to be used:	Project activity of	Project activity database and suppliers database				
Value of data applied						
for the purpose of	Years	Bulacan	Lugait	Davao		
calculating expected	2008-2018	0	0.2	0		
emission reductions in						
section B.5						
Description of	Suppliers' electricity database on a monthly basis cross-check with suppliers' bills.					
measurement methods						
and procedures to be						
applied:						
QA/QC procedures to	ISO 9001:2000					
be applied:						
Any comment:	Only 1 supplier	in Lugait is pr	eparing the mat	terial.		

Data / Parameter:	EF _{Po}
Data unit:	tCO ₂ /MWh
Description:	CO2 emission factor due to power generation
Source of data to be	Tool to calculate the emission factor for an electricity system - Annex 12 EB35
used:	(step 6 combined margin) using published data stemming from the CDM baseline
	construction for the electricity grids in the Philippines, version 2006.
Value of data applied	Bulacan (Luzon -Viyasay grid): 0.531 tCO ₂ /MWh
for the purpose of	Lugait and Davao (Mindanao grid): 0.453 tCO ₂ /MWh
calculating expected	
emission reductions in	
section B.5	
Description of	-
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	-
be applied:	
Any comment:	-

Data / Parameter:	GHG _{PAFO}				
Data unit:	tCO2/y				
Description:	GHG emissions	GHG emissions that could be generated during the preparation of alternative fuels			
	outside the proje	putside the project			
Source of data to be	Project activity	Project activity database			
used:					
Value of data applied					
for the purpose of	Years	Bulacan	Lugait	Davao	

calculating expected	2008-2018	0	0.09	0	
emission reductions in section B.5					
	Computo				
Description of	Compute				
measurement methods					
and procedures to be					
applied:					
QA/QC procedures to	ISO 9001:2000				
be applied:					
Any comment:	None				

Additional step: Biomass residues' reserves

Data / Parameter:	Biomass residues
Data unit:	type
Description:	Availability of a surplus of biomass residue
Source of data to be	Survey and/or study
used:	
Value of data applied	
for the purpose of	-
calculating expected	
emission reductions in	
section B.5	
Description of	Interview, contact and/or study.
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	ISO 9000
be applied:	
Any comment:	none

B.7.2 Description of the monitoring plan:

>>

Most of the data are already collected in the annual technical report (ATR). To facilitate internally the monitoring process, a specific report (project activity CDM database) will be prepared. Further, to ensure accurate, reliable and easily accessible data for the project emission reduction calculation, the report will also include information on the following

- Method of collection and reporting of data
- Periodic analysis of traditional and alternative fuels by in-house and accredited 3rd party
- Regular monitoring of operating parameters
- Equipment used to measure, monitor & control usage of traditional and alternative fuels
- Equipment used to analyze quality of traditional and alternative fuels
- Laboratory methods and procedures in the analysis

• Regular maintenance and calibration of equipment by in-house and accredited 3rd party

The SVP for Manufacturing, responsible for the CDM project, has assigned a team to be responsible for the overall monitoring and specific reporting of the project activity. The same team will likewise be responsible for the collection and monitoring of all relevant data, including transportation of the alternative fuels to the cement plant.

B.8 Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person(s)/entity(ies)

>>

1518/0309/2008

Holcim Philippines Ltd: Maria Rosario Chan, CDM Project team Holcim Group: Bruno Vanderborght, Catherine Martin-Robert

The two entities above are the project participants. Contact information is available in Annex 1.

SECTION C. Duration of the project activity / crediting period

C.1 Duration of the <u>project activity</u>:

C.1.1. Starting date of the project activity:

>>

The project activity has started in January 2005 with tests and trials.

C.1.2. Expected operational lifetime of the project activity:

>>

15 years

C.2 Choice of the <u>crediting period</u> and related information:

C.2.1. <u>Renewable crediting period</u>

Not applicable for the project activity.

C.2.1.1.	Starting date of the first crediting period:

>>

C.2.1.2.	Length of the first <u>crediting period</u> :

>>

C.2.2. Fixed crediting period:

C.2.2.1.	Starting date:

>>

page 58

01/06/2008

C.2.2.2.

Length:

10 years

SECTION D. Environmental impacts

>>

>>

D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

>>

As mentioned, the environmental management system of the 3 cement plants of HPHI is ISO14001 certified. This means that HPHI has undertaken a systematic review of the key environmental impacts of its operations, has identified appropriate management and monitoring measures of these impacts, and has undertaken a regular management review of its environmental performance.

While HPHI is responsible for compliance with local regulatory environmental standards such as the Philippine Clean Air Act, it is also subject to the Holcim Group Emissions Monitoring and Reporting Standard, which, amongst others, requires the installation of a continuous emissions monitoring equipment for specific air pollutants such as dust, SO₂, NOx and VOC and the (at least) annual spot measurement of a range of stack gas emission parameters by an accredited third party. Stack gas emission results, along with other environmental data and information, are collated and reported annually in a standard format to Holcim Group Support in Switzerland. The results are benchmarked across the Group. Regional and plant management receive feedback on their environmental performance.

In 2005, the quality, environment and safety management systems of all the plants have been integrated. The ISO/IMS certification together with the Holcim Group Emissions Monitoring and Reporting Standards provide a safety net of proactive measures, to ensure that the use of alternative fuels is environmentally safe for the community,

D.2. If environmental impacts are considered significant by the project participants or the <u>host</u> <u>Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

>>

The project is in full compliance with all local regulatory standards, including the Philippine Clean Air, and with international standards including those set by the Alternative Fuels and Raw Materials Group of Holcim Corporate.

An Environmental Impact Statement (EIS) was submitted by Holcim Philippines, Inc. (then known as Union Cement Corporation, UCC for La Union, Bulacan and Davao, and Alsons Cement Corporation for Lugait) to the Department of Environment and Natural Resources - Environmental Management Bureau (DENR-EMB) in connection with its application for an amendment of its Environmental Compliance Certificate (ECC) allowing its cement plants to use various agricultural and industrial wastes as alternative

fuels for its kiln operation. Environmental impacts were predicted and corresponding mitigating measures were identified during the various stages of the project. As part of the EIS process, consultation meetings with various stakeholders were conducted to ensure that their concerns and suggestions were appropriately taken. An Environmental Management Plan was likewise developed for the project.

SECTION E. Stakeholders' comments

>>

E.1. Brief description how comments by local <u>stakeholders</u> have been invited and compiled: >>

As a responsible corporate member dedicated to sustainable development, Holcim Philippines' plan to use alternative fuels in its kiln systems has been communicated to identified stakeholders.

Meetings have been done with various stakeholders at barangay and municipal level in November 2006 for Bulacan and Lugait, and in March 2007, for Davao. Identified stakeholders involved local impacted communities, local government units, non-government and government organizations and suppliers of agricultural wastes. A public notice in the local newspapers of each region has been published indicating the major line of the project activity and informing that a stakeholders' meeting will be held. In addition specific invitations have been sent to identified stakeholders.

	Bulacan	Lugait	Davao
Officer and Local	30	22	45
Government Unit			
(LGUs)			
Representative from	9	1	10
Education/Schools			
Department of		8	5
Environment &			
Natural Resources			
NGO		6	6
Youth	7		20
Representatives			
Community	68	40	70
Rice	80	7	26
Millers/Farmers			

Participants' attendance in each region

In the meeting, HPHI representatives discussed causes and impacts of global warming, increasing waste disposal problem in the Philippines, Kyoto protocol, details of the project on use of alternative fuels such as agricultural by-products and industrial wastes in HPHI cement plants, and the benefits associated with the project.

E.2. Summary of the comments received:
--

>>

The stakeholders' meetings have allowed the participants to understand the concepts related to climate change issues, its link with the Kyoto Protocol and the details the project undertaken by Holcim Philippines on the use of alternative fuels.

The stakeholders have recognized the positive environmental impacts of the project. During discussions, the efficiency of the cement kiln technology in co-processing alternative fuels had been well-communicated to the participants, as well as the proper procedures in the waste handling, receiving and feeding to ensure the safety of all concerned. The major issues raised were the economic gains of the communities and suppliers of alternative fuels.

The stakeholders have expressed their satisfaction and appreciation of the project, not only as a tool for efficient waste management, but also in helping mitigate climate change. The project was regarded as a win-win partnership between HPHI and stakeholders. It was viewed favourably due to the anticipated benefits in terms of providing long-term solution to the waste management and in helping improve local and global environmental conditions.

A write-up of each meeting is available. A summary of concerns and measures to address it is listed in annex.

E.3. Report on how due account was taken of any comments received:

>>

All comments and issues raised were documented. HPHI is committed to a continuous Information, Education, Communication (IEC) program to update stakeholders and to sustain appreciation and deepen awareness about environment protection and conservation.

page 61

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY

Organization:	Holcim Philippines Inc
Street/P.O.Box:	39 Plaza Drive, Rockwell center
Building:	Level 2, PHINMA Plaza
City:	Makati city 1211
State/Region:	
Postfix/ZIP:	1211
Country:	Philippines
Telephone:	+63 (2) 8700218
FAX:	+63 (2) 8700233
E-Mail:	rosario.chan@holcim.com
URL:	-
Represented by:	-
Title:	-
Salutation:	Mr.
Last Name:	Thackwray
Middle Name:	
First Name:	Ian
Department:	-
Mobile:	-
Direct FAX:	-
Direct tel:	-
Personal E-Mail:	rosario.chan@holcim.com

Organization:	Holcim Group Support Ltd
Street/P.O. Box:	Hagenholzstrasse 85
Building:	-
City:	Zürich
State/Region:	Zürich
Postfix/ZIP:	8050
Country:	Switzerland
Telephone:	+41 58 858 8235
FAX:	+41 58 858 8234
E-Mail:	catherine.martin-robert@holcim.com
URL:	-
Represented by:	Bruno Vanderborght
Title:	Dr.
Salutation:	Mr.
Last Name:	Vanderborght
Middle Name:	-
First Name:	Bruno

page 62

Department:	Corporate Industrial Ecology
Mobile phone:	+41 79 249 6763
Direct FAX:	+41 58 858 8235
Direct phone:	+41 58 858 8234
Personal E-Mail:	catherine.martin-robert@holcim.com

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

No public funding has been received for the project activity.

Annex 3

BASELINE INFORMATION

All data are included in the PDD. Additional information is detailed in the calculation database.

Annex 4

MONITORING INFORMATION

All data are included in the PDD. Additional information is detailed in the calculation database.

- - - - -

Appendix 1

Official data and self survey (existing suppliers) on alternative fuels availability

Self Survey on Biomass/Residual Wastes/Tires

	Distance fr	LA UNION	BULACAN	LUGAIT	DAVAO
Rice hull	Plant in km	67,824	182,400	97,500	74,607
Muñoz	212	27,180			
Sto. Niño	266	27,180			
Umingan	137	4,680			
San Jacinto, Pangasinan	107	1,296			
San Fabian, Pangasinan	81	1,296			
Asingan, Pangsinan	127	2,304			
Damortis, La Union	64	2,592			
Mangaldan, Pangasinan	89	1,296			
Intercity, Bulacan	40		182,400		
Aurora	123			24,300	
Molave	144			18,600	
Maranding	96			18,600	
Pagadian	159			36,000	
Saranggani Province	200				3,036
South Cotabato Province	200				31,255
NFA Tagum	80				29,814
NFA Sultan Kudarat	180				3,712
North Cotabato	150				6,790

Source: Lugait, Bulacan & La Union- existing Suppliers; Davao- NFA Offices

	Distance fr	LA UNION	BULACAN	LUGAIT	DAVAO
Coconut Waste	Plant in km	-	-	-	-
No study conducted yet					
	Distance fr	LA UNION	BULACAN	LUGAIT	DAVAO
Bagasse	Plant in km	-	-	-	-
Study in progress					
	Distance fr	LA UNION	BULACAN	LUGAIT	DAVAO
Residual Wastes	Plant in km	-	-	-	-
No study conducted yet					
	Distance fr	LA UNION	BULACAN	LUGAIT	DAVAO
Tires	Plant in km	-	-	-	-
No study conducted yet					

No study conducted yet

page 64

Official Data on Current generation of the biomass, waste and tires

	Distance fr	LA UNION	BULACAN	LUGAIT	DAVAO
ice hull (t)	Plant in km	537,922	705,808	573,010	373,702
CAR	0-700	53,164			
Ilocos	0-250	207,431			
Cagayan Valley	0-400	277,327			
Central Luzon	0-400		381,877		
Calabarzon	0-370		58,848		
Mimaropa	0-940		117,796		
Bicol Region	0-1500		147,287		
Western Visayas	0-250			270,123	
Central Visayas	0-150			31,325	
Eastern Visayas	0-310			118,328	
Zamboanga Peninsula	0-450			84,383	
Northern Mindanao	0-300			68,851	
Davao Regioin	0-200				70,512
SOCCKSARGEN	0-300				163,51
ARMM	0-300				81,781
Caraga	0-760				57,894

Source : Philippine Bureau of Agricultural Statistics, 2005

Computed at 15% of the total palay production in 2005 - print source of 15% (www.knowledgebank.irri.org)

	Distance fr	LA UNION	BULACAN	LUGAIT	DAVAO
Coconut Waste (t)	Plant in km	74,897	2,807,308	4,644,343	3,951,868
CAR	0-700	319			
Ilocos	0-250	10,669			
Cagayan Valley	0-400	26,460			
Central Luzon	0-400		69,223		
Calabarzon	0-370		593,440		
Mimaropa	0-940		266,860		
Bicol Region	0-1500		474,130		
Western Visayas	0-250			200,005	
Central Visayas	0-150			141,676	
Eastern Visayas	0-310			705,858	
Zamboanga Peninsula	0-450			655,129	
Northern Mindanao	0-300			619,503	
Davao Region	0-200				997,421
SOCCKSARGEN	0-300				319,726
ARMM	0-300				468,163
Caraga	0-760				389,246

Source : Philippine Bureau of Agricultural Statistics, 2005

Computed at 40% of the total coconut production in 2005 - verify the 40% assumption (Cereals division/BAS)

page 65

	Distance fr	LA UNION	BULACAN	LUGAIT	DAVAO
Bagasse (t)	Plant in km	105,106	1,078,140	4,439,816	1,455,564
CAR	0-700	-	-	-	-
Ilocos	0-250	-	-	-	-
Cagayan Valley	0-400	105,106	-	-	-
Central Luzon	0-400	-	486,588	-	-
Calabarzon	0-370	-	505,833	-	-
Mimaropa	0-940	-	-	-	-
Bicol Region	0-1500	-	85,719	-	-
Western Visayas	0-250	-	-	4,283,313	-
Central Visayas	0-150	-			
Eastern Visayas	0-310	-	-	156,503	-
Zamboanga Peninsula	0-450	-	-	-	-
Northern Mindanao	0-300	-	-	-	1,102,562
Davao Region	0-200	-	-	-	239,020
SOCCKSARGEN	0-300	-	-	-	113,982
ARMM	0-300	-	-	-	-
Caraga	0-760	-	-	-	-

Source: Sugar Regulatory Administration, p 35. of the Annual Synopsis for the Crop Year 2003-2004

	Distance fr	LA UNION	BULACAN	LUGAIT	DAVAO
Residual Wastes (plastics from MSW)	Plant in km	17,249	51,645	39,033	22,501
CAR	0-700	2,801			
Ilocos	0-250	8,720			
Cagayan Valley	0-400	5,729			
Central Luzon	0-400		17,128		
Calabarzon	0-370		19,898		
Mimaropa	0-940		4,965		
Bicol Region	0-1500		9,653		
Western Visayas	0-250			12,797	
Central Visayas	0-150			11,840	
Eastern Visayas	0-310			7,488	
Zamboanga Peninsula	0-450			5,875	
Northern Mindanao	0-300			7,306	
Davao Region	0-200				7,459
SOCCKSARGEN	0-300				4,808
ARMM	0-300				5,922
Caraga	0-760				4,312

Source: National Statistics Office (www.census.gov.ph) & Solid Waste Management Manual 0.000005 tons residual waste per day per capita

page 66

Appendix 2

Grid emission factor calculations

REF: Tool to calculate the emission factor for an electricity system

(The complete calculation sheets have been shown during validation)

Luzon-Visayas grid emission factor

Step 1. Identify the relevant electric power system

Bulacan plant is connected to the Luzon-Visayas grid.

Step 2. Select an operating margin (OM) method

The simple OM has been chosen as the low cost must run resources constitute less than 50% of the total grid generation.

Step 3 and 4. Calculate the operating margin emission factor according to the selected method and identify the cohort of power units to be included in the build margin

	(C)	(D)	(F)	(H)	(I)	(J)
Item	Fuel Consumption Impact		Unadjusted Annual Carbon Emission Impact	Actual Carbon Emission Impact	Annual Carbon Dioxide Emission Impact	Simple OM EF
Abbreviation	FCI		CEI	Adjusted CEI	tCO2	
Data Source	(A) x (B)	[(C)x 1055]/10^12	(D) x (E)	(F) x (G)	(H) x (44/12)	(I) / (A/1000)
Unit	BTU	TJ	tC/yr	tC/yr	tCO2/yr	tCO2/MW h
Combined- Cycle	4'204'320'768'333	4'435.56	89'598.28	89'598.28	328'527.03	
Diesel	34'241'696'121'701	36'124.99	729'724.79	729'724.79	2'675'657.55	
Gas Turbine	773'227'872'000	815.76	16'478.26	16'478.26	60'420.28	
Oil Thermal	10'189'812'770'000	10'750.25	226'830.33	226'830.33	831'711.20	

page 67

Coal	140'207'764'662'623	147'919.19	3'964'234.34	3'964'234.34	14'535'525.91	
Natural Gas	74'876'818'891'833	78'995.04	1'208'624.17	1'208'624.17	4'431'621.96	
Total					22'863'463.93	0.695

Step 5. Calculate the build margin emission factor

Column	(B)	(C)	(E)	(G)	(H)	(1)
ltem	Fuel Consumption Impact	Type of Fuel Used	Unadjusted Annual Carbon Emission Impact	Actual Carbon Emission Impact	Annual Carbon Dioxide Emission Impact	Build Margin Emission Factor
Abbreviation	FCI		CEI	Adjusted CEI	tCO2	EF BM
Data Source	NPC, MERALCO, KEPCO ILIJAN, ERC	NPC, MERALCO , KEPCO ILIJAN, ERC	(B) x (D)	(E) x (F)	(G) x [44/12]	(H) / (A)
Unit	TJ/yr		tC/yr	tC/yr	tCO2/yr	tCO2/MWh
PMDP	287.63	Diesel Oil	5'810.05	5'810.05	21'303.51	
San Roque Hydro Power Plant	-	Hydro	-	-	-	
San Lorenzo Natural Gas Fired Combine	18'530.05	Natural Gas	283'509.69	283'509.69	1'039'535.54	
Cycle Power Plant	43.46	Diesel Oil	877.93	877.93	3'219.08	
Ilijan Combined Cycle	28'730.78	Natural Gas	439'580.90	439580.90	1'611'796.65	
Natural Gas Power Plant	11.23	Diesel Oil	226.78	226.78	831.54	
Casecnan Hydro Power Plant	-	Hydro	-	-	-	
Sta. Rita Natural Gas	41'222.18	Natural Gas	630'699.28	630'699.28	2'312'564.03	
	157.37	Diesel Oil	3'178.81	3178.81	11'655.62	
Total					5'000'905.96	0.368

Step 6. Calculate the combined margin emission factor

page 68

Step 6 Combined margin EF grid = EF OM X 0.5 + EF BM X 0.5

Simple OM	0.695
BM	0.368
Combined margin	0.531

Mindanao grid emission factor

Step 1. Identify the relevant electric power system

Davao and Lugait plants are connected to the Mindanao grid.

Step 2. Select an operating margin (OM) method

The low cost must run resources constitute more than 50% of the total grid generation.

				Average 2002-	•	
	2002	2003	2004	2004	Percentage	
		•	<u>(MWh)</u>		%	
Oil-Based	1'016'537	1'713'693	1'915'799	1'548'676	23.66%	
Combined-Cycle	-	-	-	-	0.00%	
Diesel	1'016'082	1'711'563	1'915'500	1'547'715	23.65%	24%
Gas Turbine	-	-	-	-	0.00%	Z4 /0
Oil Thermal	455	2'129	299	961	0.01%	
Coal	-	-	-	-	0.00%	
Natural Gas	-	-	-	-	0.00%	
Geothermal	857'912	861'015	909'815	876'247	13.39%	76%
Hydro	4'107'289	3'989'013	4'261'525	4'119'276	62.95%	
Total	5'981'738	6'563'721	7'087'140	6'544'199		

Fossil-fuel fired low-cost/ must run

page 69

Step 3 and 4. Calculate the operating margin emission factor according to the selected method and identify the cohort of power units to be included in the build margin

The average OM have been calculated as the low cost must run resources constitute more than 50% of the total grid generation.

	(C)	(D)	(F)	(H)	(I)	(J)
Item	Fuel Consumption Impact		Unadjuste d Annual Carbon Emission Impact	Actual Carbon Emission Impact	Annual Carbon Dioxide Emission Impact	Simple OM EF
Abbreviation	FCI		CEI	Adjusted CEI	tCO2	
Data Source	(A) x (B)	[(C)x 1055]/10^12	(D) x (E)	(F) x (G)	(H) x (44/12)	(I) / (A/1000)
Unit	BTU/yr	TJ/yr	tC/yr	tC/yr	tCO2/yr	tCO2/MW h
Combined- Cycle	0	-	_	-	-	
Diesel	1.37747E+13	14'532.27	293'551.87	293'551.87	1'076'356.84	
Gas Turbine	0	-	-	-	-	
Oil Thermal	8265861047	8.72	184.00	184.00	674.67	
Coal	0	-	-	-	-	
Natural Gas	0	-	-	-	-	
Total					1'077'031.52	0.695

С	(C)	(D)	(F)	(H)	(I)	(J)
Item	Fuel Consumption Impact		Unadjusted Annual Carbon Emission Impact	Actual Carbon Emission Impact	Annual Carbon Dioxide Emission Impact	Average OM EF
Abbreviation	l	FCI	CEI	Adjusted CEI	tCO2	
Data Source	(A) x (B)	[(C)x 1055]/10^12	(D) x (E)	(F) x (G)	(H) x (44/12)	(I) / (A/1000)
Unit	BTU	TJ	tC/yr	tC/yr	tCO2/yr	tCO2/MWh

page 70

Combined-Cycle	0	_	-	-	-	
Diesel	1.37747E+13	14'532.27	293'551.87	293'551.87	1'076'356.84	
Gas Turbine	0	-	-	-	-	
Oil Thermal	8265861047	8.72	184.00	184.00	674.67	
		0.72	104.00	164.00	074.07	
Coal	0	-	-	-	-	
Natural Gas	0	-	-	-	-	
Geothermal						
Hydro						
Total					1'077'031.52	0.165

Step 5. Calculate the build margin emission factor

	(B)	(C)	(E)	(G)	(H)	(1)
ltem	Fuel Consumption Impact	Type of Fuel Used	Unadjuste d Annual Carbon Emission Impact	Actual Carbon Emission Impact	Annual Carbon Dioxide Emission Impact	Build Margin Emission Factor
Abbreviation	FCI		CEI	Adjusted CEI	tCO2	EF BM
Data Source	SPPC and WMPC Info Sheets	SPPC and WMPC Info Sheets	(B) x (D)	(E) x (F)	Table 6.13	(H) / (A)
Unit	TJ/yr		tC/yr	tC/yr	tCO2/yr	tCO2/MW h
Mindanao II	-	Geothermal	-	-	-	
Talomo	-	Hydro	-	-	-	
SPPC	2'045	Diesel	41306.02	41306.02	151'455.41	
WMPC	2'232	Diesel	45079.57	45079.57	165'291.76	
Mindanao I	-	Geothermal	-	_	-	
Total					316'747.17	0.211

Step 6. Calculate the combined margin emission factor

Step 6 Combined margin EF grid = EF OM X 0.5 + EF BM X 0.5

Simple OM	0.695
BM	0.211
Combined margin	0.453

Appendix 3

Stakeholders' Meeting : Summary of Issues and Concerns and proposed measures to address them

Holcim Philippines Bulacan Plant

What are the benefits to the community of using alternative fuel?

The implementation of the project shall require manpower and thus, shall be a source of additional income to the farmers, millers and other members of the community. Project stakeholders, supported by Holcim know how shall be able to enhance their capabilities in handling, proper health and safety practices. The use of alternative fuels results in the reduction of GHG thus resulting in an improvement of the climate and therefore our life quality.

What is the specific role of Holcim and the community in the undertaking?

Holcim, as a responsible company, is proactive and participates in project that protects the climate and support sustainable development of the country. The community is part of the project as the opportunities giving by the project bring a win-win situation.

How can the schools/institutions with MRF participate in the project?

The main objective of this initiative is the reduction of GHG emission, in particular CO2. CO2 results from burning. By taking the current project as an example and educating the Schools/institutions, they can help reduce GHG emission by applying waste hierarchy in the treatment of their wastes. As much as possible, the practice of open burning of wastes should be eliminated. Schools can teach their students the importance of proper segregation of wastes – reuse and recycle wastes that can still be of value. Wastes that cannot be recycled nor reused, provided it will not harm the environment, product quality, process and safety can then go to cement plant as alternative fuel.

What is the economic return to the rice millers if they will supply the rice husks that will be used as alternative fuel in the cement processing?

During the milling season, in order to have more storage space, rice husks are usually landfilled in an uncontrolled manner or openly burned in the fields by rice millers. With this project, economic incentives to cover transportation and labor costs will be given to rice millers/farmers when the rice husks are brought to Holcim. In addition, there will be employment opportunities (direct and indirect) during the construction of the facilities and operation of the project.

Holcim Philippines La Union Plant

What is the purpose and goal of implementing this project?

Holcim implements this project to help in the global effort of reducing emissions of CO2 that cause climate change and to reduce the use of coal which is non-renewable.

What are the materials that will qualify as AFR for this project?

Because of the abundance of agricultural by products and the current waste problems in the Philippines, the project will primarily use these waste materials (sorted MSW and the agricultural by- products) to reduce the use of fossil fuels.

What is the incentive of the rice millers and the community in providing the materials that will be used as AFR?

During the milling season, in order to have more storage space, rice husks are usually landfilled in an uncontrolled manner or openly burned in the fields by rice millers. With this project, economic incentives to cover transportation and labor costs will be given to rice millers/farmers when the rice husks are brought to Holcim. In addition, there will be employment opportunities (direct and indirect) during the construction of the facilities and operation of the project.

How can the project help mitigate climate change if it will also require burning the rice husks and plastics?

Mitigation of climate change takes place first because of the reduction in the corresponding GHG that would have been emitted if coal was used as the fuel in the cement process. Second, in open burning, the heat generated is lost to the atmosphere and methane, as well as dust particles, are released. Third by landfilling the biomass, methane is alsol released. In the cement kiln, the heat generated by the rice husks and plastics is now recovered by the kiln system and replaces the heat that would have been been supplied by coal. GHG emission coming from coal is therefore not released. Further, the methane that would have been released if the rice husks were landfilled are not released.

How can you prove that emissions coming from the cement plant have no harmful effects to the impacted community?

HPHI ensures that it complies with the standards set, not only by local regulators but also by international agencies. Test runs have already been conducted showing that the use of these alternative materials does not impact the quality of the product, process, health & safety, and the environment. In additions, annual emission measurement is conducted by an accredited 3rd party. HPHI plants have CEMS that continuously monitor the emission of inorganic pollutants from the stack. These results are submitted to EMB and are available to the public. In addition to providing a sustainable solution to the waste problem, Holcim can help in subsidizing the transport

In what ways can Holcim assist the LGU?

In addition to providing a sustainable solution to the waste problem, Holcim can help in subsidizing the transport collection of the segregated wastes from an MRF to its cement plant. In can also assist the LGUs in information and education campaign on sustainable development such as solid waste management.

Holcim Philippines Lugait Plant

What are the materials that will qualify as alternative fuels for this project?

Because of the abundance of agricultural by-products and the current waste problems in the Philippines, sorted municipal solid waste and the agricultural by products will be the major materials used as alternative fuel.

What is the incentive of the rice millers and the community in providing the materials that will be used as AFR?

During the milling season, in order to have more storage space, rice husks are usually landfilled in an uncontrolled manner or openly burned in the fields by rice millers. With this project, economic incentives to cover transportation and labor costs will be given to rice millers/farmers when the rice husks are brought to Holcim. In addition, there will be employment opportunities (direct and indirect) during the construction of the facilities and operation of the project.

How can this project help in mitigating climate change if it will also require burning?

Mitigation of climate change takes place first because of the reduction in the corresponding GHG that would have been emitted if coal was used as the fuel in the cement process. Second, in open burning, the heat generated is lost to the atmosphere and methane as well as dust particulates, are released. Third by landfilling the biomass, methane is also released. In the cement kiln, the heat generated by the rice husks and plastics is now recovered by the kiln system and heat that would have been supplied by coal is not needed. Its GHG emissions are not released. Methane, as well as dust particulates, that would have been released by burning in open air or landfilling are not released.

How can you prove that emissions coming from the cement plant have no harmful effects to the impacted community?

HPHI ensures that it complies with the standards set, not only by local regulators but also by international agencies. Test runs have already been conducted showing that the use of these alternative materials does not impact the quality of the product, process, health & safety, and the environment. In additions, annual emission measurement is conducted by an accredited 3rd party. HPHI plants have CEMS that continuously monitor the emission of inorganic pollutants from the stack. These results are submitted to EMB and are available to the public.

What is the objective of implementing this project?

Holcim implements this project in support of the global effort to reduce emissions of CO2 that cause climate change and to reduce the use of coal which is non-renewable.

In what ways can Holcim assist the LGU in the collection of waste?

Holcim can help in subsidizing the transport collection of the segregated wastes from an MRF to its cement plant. It can also assist the LGUs in the information and education campaign on sustainable development such as solid waste management.

What will be the role of the LGU to help in this project?

LGUs play a very important role in this project, especially in the implementation of proper segregation of solid wastes / in accordance to Solid Management Waste Act. It can help ensure that wastes are properly segregated and only those that cannot be recycled nor reuse then goes to the MRF for final disposal to Holcim

What are the potential effects of utilizing alternative fuel?

Test runs have been conducted and the results showed that there are no negative impacts when using agricultural byproducts and sorted MSW in the cement kilns to reduce the use of fossil fuels. The following safeguard measures are inplace to ensure that risks are managed well when these materials : a) stack gas emissions are measured by 3rd party accredited laboratory / Continuous Emission Monitoring System, b) product quality is regularly checked, and c) process conditions are regularly monitored.

What are the benefits that will be given to the contributors of alternative fuels?

First and foremost will be the improvement in the environmental condition of the people. Contributors or suppliers of alternative fuels will have additional income. For example, during the milling season, in order to have more storage space, rice husks are usually dumped or left to decay or openly burned in the fields by rice millers. With this project, economic incentives to cover transportation and labor costs will be given to rice millers/farmers when the rice husks are brought to Holcim. In addition, there will be employment opportunities (direct and indirect) during the construction of the facilities and during operation of the project.

Why are hospital wastes cannot be accepted as alternative fuels?

Holcim follows strictly its protocol in the use of any materials as alternative fuels. There are specific wastes that are known to pose danger either to the process or the health and safety of the people. For hospital wastes, the main issue is the safe handling of such materials.

What is the transportation scheme for the materials that will be collected?

A subsidy will be given to cover the transportation cost of the materials and labor costs.

Holcim Philippines Davao Plant

How much is the economic return to the rice millers if they will give the rice husks that will be used for the project?

It is difficult to state at this point how much would be the economic return to the rice millers. The current practice during the milling season is to burn the rice husks, in order to free up some space, or to landfill it in an uncontrolled manner. With this project, economic incentives to cover transportation and labor costs will be given to rice millers/farmers when the rice husks are brought to Holcim. In addition, there will be employment opportunities (direct and indirect) and investment opportunities during the construction of the facilities and operation of the project.

What are the materials that will qualify as alternative fuels for this project?

Because of the abundance of agricultural by products and the current waste problems in the Philippines, the project will primarily use these waste materials (sorted MSW and the agricultural by- products) to reduce the use of fossil fuels.

Is Holcim legally compliant if alternative fuels will be used in the system?

Yes. Holcim is compliant to all regulations. It has its ECC amended allowing it to use alternative fuels to replace coal in the manufacture cement.

What is the operating scheme to implement the collection of municipal wastes and rice husk that will give incentives to the community?

Holcim can subsidize the cost of transporting the rice husks and municipal wastes from the community to its cement plant. What is more important however is that the community has now, by implementing proper segregation of its waste and in accordance to the Solid Management Waste Act, has a sustainable solution to its waste problem. Details of how this will be operationalized can be further discussed.

Is it possible that Holcim will help in the collection of wastes to ease the dues of the community they pay for the garbage collection?

Holcim may help by subsidizing the collection of the segregated wastes from an MRF to its cement plant. LGU on the other hand can help by ensuring that wastes are properly segregated and only those that cannot be recycled nor reused then goes to the MRF.

What is the guarantee that the emissions produced by implementing this project are safe?

HPHI ensures that it complies with the standards set, not only by local regulators but also by international agencies. Test runs have already been conducted showing that the use of these alternative materials does not impact the quality of the product, process, health & safety, and the environment. In additions, annual emission measurement is conducted by an accredited 3rd party. HPHI plants have CEMS that continuously monitor the emission of inorganic pollutants from the stack. These results are submitted to EMB and are available to the public.

page 77

Appendix 4

Analysis of the technical barriers

BULACAN

page 78

Bottelnecks and potential for AFR use Plant: Date: Note: the values (min, max,...) herebelow are guidelines values and have to be adapted upon the specific plant experience **Precalciner Kiln** • Process Type: Current Min Min Current Min Max Max Max Value status **1 Material Preparation** Current Min Min Min Max Max Max Current status 1.1 Kiln feed 1.5 sdv LSF fluctuations 3.00 1.2 <u>2 %</u> 2.0 0 0.5 Dosing fluctuations 8.0 10 % G Coefficient of variation R90 №m 5 1.2 Coal / petcoke (at main burner) 17.0 3 Fineness at R90 Nm coal 15 **20** % 1.0 0.5 0.75 sdv Fineness R90 Nm fluctuations 1 Dosing fluctuations 1.0 5 % Pressure fluctuation at the burner within +/-5% 100.0 90.00 % 3 P fluctuation at the burner within +/- 5 and 7.5% 0.0 5 % ത **2 KILN OPERATION 2 KILN OPERATION** 2.1 Combustion (based on 5-days campaign) 2.00 3.50 3.50 O2 at kiln inlet 4 5 %O2 CO at kiln inlet 0 10 0.05 0.1 %CO 900.00 950.00 Temperature at kiln inlet 928 1050 1100 °C Temperature at exit lowest cyclone ILC 845 840.00 845.00 850 860 °C Temperature at exit lowest cyclone SLC 875 865.00 870.00 880 885 °C 2.2 Hot meal (based on 5 days-campaign) % calcination 98.0 92.50 94 **95** % SO3 1.70 2.3 2.7 %SO3 CI 1.51 1.5 1.8 %CI K2O 1.07 1.5 1.6 %K2O green: min / max requirements respected 0.9 Sulfur Volatility 0.63 0.7 ш ш min min / max max exceeded 2.3 Main Firing but within min 35.00 Heat distribution to main firing 39.0 40.00 45 45 % total fuel 1.4 Ash input at burning zone 3 4 % in cli Length of fixed coating 5.0 4 6 χ Ø_{kiln} 0.0 25 % total fuel Fine AFR powder in main flame (diam.<0.5mm) Solid AFR diam.<1.5 mm in main flame 0.0 12 15 % total fuel Solid AFR diam<5 mm or foils < 50 mm 10 0.0 % total fuel Comment: all substitution refer to total sub. of the fuel and can not be accumulated 2.4 Kiln Inlet Heat distribution to kiln inlet 0.0 8 % total fuel 5 red: % total fuel Whole tires 0.0 5 Lump fuel >50mm 0.0 % total fuel 2.4 ILC Current Min Min Min Max Max Max Current status Heat distribution to precalcination 20.9 10.00 15.00 30 % total fuel 20 0.0 % total fuel Lump fuel >50mm 5 Solid AFR < 50 mm 0.0 % total fuel Gas residence time in calciner 4.50 5.00 1.9 seconds 2.4 SLC Heat distribution to precalcination 50.2 30.00 40.00 50 60 % total fuel 0.0 5 % total fuel Lump fuel >50mm Solid AFR < 50 mm 0.0 % total fuel 4.50 5.00 Gas residence time in calciner 4.3 seconds **3 MAIN BURNER** % Primary Air(radial/axial) 12.8 10.00 12.00 18 20 % 7.3 10 N/MW Axial Momentum 9.00 58 25.00 Coal injection velocity 30 m/s

page 79

.1	Clinker		Current	Min Min	Min	Мах	Max Max	Current status
	Liquid phase 1450°C of main clinker		28.16		25.00	26	% in cli	8
	CaOfree		1.04		0.80	1.5	% in cli	<u> </u>
	<u>% off-spec clinker</u> P₂O₂ in Clinker		<u>1.6</u> 0.06	•••		0.45	<u> </u>	<u>র</u> হা
			0.00			0.40	0.3 % in cli	<u>x</u>
.2	Alkali & Sulfur (based on A/S balan	ce)					4.95	-
	"Calculated" Alk/S - ratio in clinker "Calculated" SO3 in clinker		1.01		0.80	1.2	1.25 - 1.5 % in cli	<u>র</u> হা
	Alkali input (process point of view)		0.67				1.5 % in cli	영
	Alkali hipat (process point of nem)		0.04				70 III CII	<u> </u>
1.3	Chlorine & Dust							
	Relevant Cl input from raw materials	:& fuels	162			200	300 q/t cli	영
_	Chlorine output through all cement		138			800	1000 g/t cem	였
-5	KILN PERFORMANCE		Current		Min	Mari	hts as hts as	Current statu
	OEE net		Current 82.60	Min Min 75.00	85.00	Max	Max Max %	
	Rate		90.70		95.00		%	g
	Availability		91.00		90.00		%	<u>9</u>
	MTBF		217		400.00		hours	S
	Number of kiln stops			n		40	80 stop/a	2
	Stops due to cyclones plug-ups		0			5	10 stop/a	8
	Refractory consumption (4 years roll Emissions (below legal limits "Yes"		623 Yes			400	600 q/tcli -	ا ر چ
6	AFR: for each AFR installation ind		1 65	•			-	
-			Current	Min Min	Min	Max	Max Max	
	AFR Installation 1: Rice Hull at SL	<u>c</u>						
	Storage capacity		120.00	507.72	134.40		t	<u>x</u>
	Feeding capacity		2.80	10.58	2.80		t/h	S
	NCV Fluctuation of AFR 1					1000	+/-kJ/kg	
	Solid AFR injection velocity (if used a	<u>at main burn e</u>			20.00	30	m/s	
	OEE net	at main burn e	r) <u>60.00</u>	75.00	85.00		%	ø
	OEE net MTBF	at main burner			85.00 50.00	180		
	OEE net				85.00	180	% hours v Burner L	.ow ILC
	OEE net MTBF	SF	60.00	n Hi	85.00 50.00	180 t Lov	% hours v Burner L	ow ILC esidence
	OEE net MTBF Current AFR test KF LS	SF	60.00 Coal R90r	n Hi	85.00 50.00 igh PH Exi	180 t Lov	% hours v Burner L	.ow ILC
	OEE net MTBF Current AFR test KF LS	SF	60.00 Coal R90r	n Hi	85.00 50.00 igh PH Exi	180 t Lov	% hours v Burner L	ow ILC esidence
	OEE net MTBF Current AFR test Fluctua	GF ition	60.00 Coal R90r fluctuation	n Hi	85.00 50.00 igh PH Exi Temp	180 Lov Mo	% hours v Burner mentum	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctuation Re-organization	GF Ition	Coal R90r fluctuation	n Hi	85.00 50.00 Igh PH Exi Temp	180 Low Mo	% hours v Burner mentum Re Enlarge IL	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctua Re-organization Re-fleeting of	GF tition Check speed	Coal R90r fluctuation	n Hi	85.00 50.00 Igh PH Exi Temp	180 t Low Mo Series fan operation o	% hours v Burner mentum Re Enlarge IL	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctua Re-organization Re-fleeting of heavy equipme	SF tition Check speed flucture	Coal R90r fluctuation	n Hi	85.00 50.00 Igh PH Exi Temp	180 t Low Mo Series fan operation o PAF	% hours v Burner mentum Re Enlarge IL	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctua Re-organization Re-fleeting of	SF tition Check speed fluctur f	Coal R90r fluctuation	n Hi	85.00 50.00 Igh PH Exi Temp	180 t Low Mo Series fan operation o	% hours v Burner mentum Re Enlarge IL	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctua Re-organization Re-fleeting of heavy equipme Rehabilitation of	SF tition Check speed fluctur f	Coal R90r fluctuation	n Hi	85.00 50.00 Igh PH Exi Temp	180 t Low Mo Series fan operation o PAF	% hours v Burner mentum Re Enlarge IL	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctua Re-organization Re-fleeting of heavy equipme Rehabilitation of	SF tition Check speed fluctur f	Coal R90r fluctuation	n Hi	85.00 50.00 Igh PH Exi Temp	180 t Low Mo Series fan operation o PAF	% hours v Burner mentum Re Enlarge IL	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctua Re-organization Re-fleeting of heavy equipme Rehabilitation of	SF tition Check speed fluctur f	Coal R90r fluctuation	n Hi	85.00 50.00 Igh PH Exi Temp	180 t Low Mo Series fan operation o PAF	% hours v Burner mentum Re Enlarge IL	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctua Re-organization Re-fleeting of heavy equipme Rehabilitation of drilling equipme	GF tition Check functure functure functure functure Check	Coal R90r fluctuation	Impleme Assessn	85.00 50.00 Igh PH Exi Temp	180 t Mo Mo Mo Mo Series fan operation o PAF Adjust bur	% hours V Burner mentum Re Enlarge IL Enlarge IL	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctua Re-organization Re-fleeting of heavy equipme Rehabilitation c drilling equipme	SF ation Check for for ent Check fluctur Check fluctur Check	Coal R90r fluctuation	Impleme Assessm	85.00 50.00 Igh PH Exi Temp ent PH nent	180 Low Mo Series fan operation o PAF Adjust bur	% hours V Burner mentum Dof ner Sufficient	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctua Re-organization Re-fleeting of heavy equipme Rehabilitation of drilling equipme	SF ation Check for for ent Check fluctur Check fluctur Check	Coal R90r fluctuation	Impleme Assessm	85.00 50.00 Igh PH Exi Temp	180 Low Mo Series fan operation o PAF Adjust bur	% hours V Burner mentum Df ner Sufficient eding and	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctua Re-organization Re-fleeting of heavy equipme Rehabilitation c drilling equipme	SF ation Check for for ent Check fluctur Check fluctur Check	Coal R90r fluctuation	Impleme Assessm	85.00 50.00 Igh PH Exi Temp ent PH nent	180 Low Mo Series fan operation o PAF Adjust bur	% hours V Burner mentum Df ner Sufficient	ow ILC esidence Time
	OEE net MTBF Current AFR test Fluctua Re-organization Re-fleeting of heavy equipme Rehabilitation c drilling equipme	SF ation Check for for ent Check fluctur Check fluctur Check	Coal R90r fluctuation	Impleme Assessm	85.00 50.00 Igh PH Exi Temp ent PH nent	180 Low Mo Series fan operation o PAF Adjust bur	% hours v Burner mentum Ref of ner sufficient eding and landling	ow ILC esidence Time
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation of drilling equipme	SF ation Check for for ent Check fluctur Check fluctur Check	Coal R90r fluctuation	Impleme Assessm	85.00 50.00 Igh PH Exi Temp ent PH nent	180 Low Mo Series fan operation o PAF Adjust bur	% hours v Burner mentum Ref of ner sufficient eding and landling	ow ILC esidence Time
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation of drilling equipme Low MTBF Low O ₂ a Inle	SF ation Check for for ent Check fluctur Check fluctur Check	Coal R90r fluctuation	Impleme Assessm	85.00 50.00 Igh PH Exi Temp ent PH nent	180 Low Mo Series fan operation o PAF Adjust bur	% hours v Burner mentum Ref of ner sufficient eding and landling	ow ILC esidence Time
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation of drilling equipme Low MTBF Low O2 at Inter Good Replace ILC Fan	SF ation And Check speed fluctur Check at Killn	Coal R90r fluctuation	Impleme Assessm	85.00 50.00 Igh PH Exi Temp ent PH nent	180 Low Mo Series fan operation o PAF Adjust bur	% hours v Burner mentum Ref of ner sufficient eding and landling	ow ILC esidence Time
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation of drilling equipme Low MTBF Low O ₂ a Inle	SF ation And Check speed fluctur Check at Killn	Coal R90r fluctuation	Impleme Assessm	85.00 50.00 Igh PH Exi Temp ent PH nent	180 Low Mo Series fan operation o PAF Adjust bur	% hours v Burner mentum Ref of ner sufficient eding and landling	ow ILC esidence Time
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation c drilling equipme Good Replace ILC Fan Replace BH F	SF ation And Check speed fluctur Check at Killn	Coal R90r fluctuation	Impleme Assessm	85.00 50.00 Igh PH Exi Temp ent PH nent	180 Low Mo Series fan operation o PAF Adjust bur	% hours v Burner mentum Ref of ner sufficient eding and landling	ow ILC esidence Time
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation c drilling equipme Good Replace ILC Fan Replace BH F No Handling and	SF ation And Check speed fluctur Check at Killn	Coal R90r fluctuation	Impleme Assessm	85.00 50.00 Igh PH Exi Temp ent PH nent	180 Low Mo Series fan operation o PAF Adjust bur	% hours v Burner mentum Ref of ner sufficient eding and landling	ow ILC esidence Time
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation c drilling equipme Good Replace ILC Fan Replace BH F	SF ation And Check speed fluctur Check at Killn	Coal R90r fluctuation	n Hi Impleme Assessm	85.00 50.00 Igh PH Exit Temp ent PH nent V Equipme Capability	180 Low Mo Series fan operation o PAF Adjust bur	% hours v Burner mentum Ref of ner	ow ILC esidence Time
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation c drilling equipme Good Replace ILC Fan Replace BH F No Handling and	SF ation And Check speed fluctur Check at Killn	Coal R90r fluctuation	n Hi Impleme Assessn	85.00 50.00 Igh PH Exit Temp ent PH nent V Equipme Capability	180 Low Mo Series fan operation o PAF Adjust bur	% hours v Burner mentum Dr eding and landling Facility	ow ILC esidence Time .c
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation of drilling equipme Cover MTBF Low 02 a Inter- Inter- Good Replace ILC Fan Replace BH F No Handling and Feeding Facility	SF ation And Check speed fluctur Check at Killn	Coal R90r fluctuation	n Hi Impleme Assessn	85.00 50.00 Igh PH Exit Temp ent PH nent V Equipme Capability	180 Low Mo Series fan operation o PAF Adjust bur	% hours v Burner mentum Ref of ner	ow ILC esidence Time .c
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation c drilling equipme Good Replace ILC Fan Replace BH F No Handling and	SF ation And Check speed fluctur Check at Killn	Coal R90r fluctuation	n Hi Impleme Assessn	85.00 50.00 Igh PH Exit Temp ent PH nent V Equipme Capability	180 Low Mo Series fan operation o PAF Adjust bur	% hours v Burner mentum Dr eding and landling Facility	ow ILC esidence Time .c
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation of drilling equipme Cover MTBF Low 02 a Inter- Inter- Good Replace ILC Fan Replace BH F No Handling and Feeding Facility	SF ation And Check speed fluctur Check at Killn	Coal R90r fluctuation	n Hi Impleme Assessn	85.00 50.00 Igh PH Exi Temp ent PH nent v Equipme Capability	180 Low Mo Series fan operation o PAF Adjust bur Ins Fee H	% hours v Burner mentum Enlarge IL of ner sufficient eding and landling Facility Insufficient Feeding Capac	ow ILC esidence Time
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation of drilling equipme Cover MTBF Low 02 a Inter- Inter- Good Replace ILC Fan Replace BH F No Handling and Feeding Facility	SF ation And Check speed fluctur Check at Killn	Coal R90r fluctuation	n Hi Impleme Assessn	85.00 50.00 Igh PH Exi Temp ent PH nent v Equipme Capability	180 Low Mo Series fan operation o PAF Adjust bur Instal	% hours v Burner mentum Enlarge IL of ner sufficient eding and landling Facility Insufficient Feeding Capac I Handling & Feed	ow ILC esidence Time
	OEE net MTBF Current AFR test Re-organization Re-fleeting of heavy equipme Rehabilitation of drilling equipme Cover MTBF Low 02 a Inter- Inter- Good Replace ILC Fan Replace BH F No Handling and Feeding Facility	SF ation And Check speed fluctur Check at Killn	Coal R90r fluctuation	n Hi Impleme Assessn	85.00 50.00 Igh PH Exi Temp ent PH nent v Equipme Capability	180 Low Mo Series fan operation o PAF Adjust bur Install Facilit	% hours v Burner mentum Enlarge IL of ner sufficient eding and landling Facility Insufficient Feeding Capac	ow ILC esidence Time

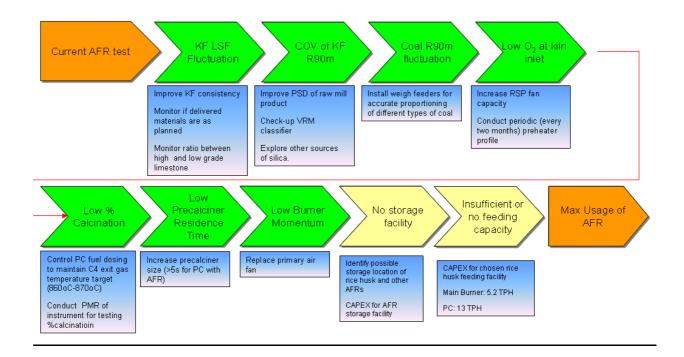
page 80

Bottlenecks and potential for AFR use

Note: the values (min, max,...) herebelow are guidelines values and have to be adapted upon the specific plant experience

					Process Type:	Precalciner
	Current Value	Min Min	Min	Max	Max Max	Current status
1 Material Preparation (based on 5-days campaig	(n)					
1.1 <u>Kiln feed</u>						
LSF fluctuations	1.88			0.7	1 sdv	
Dosing fluctuations	0.10		0.1	0.2	%	
Coefficient of variation R90 •m	4.3			3	<mark>5</mark> %	
1.2 Coal / petcoke (at main burner)						
Fineness at R90 ♦m	19.60				22 %	
Fineness R90 Im fluctuations	0.83			0.5	0.75 sdv	
Fineness at R200 ♦m	0.00				%	
Dosing fluctuations	4.90			0.7	0.95 %	
Pressure fluctuation at the burner within +/-5mbar	10.00			4	<mark>5</mark> %	
P fluctuation at the burner within +/- 5 and 7.5mbar					%	
2 KILN OPERATION						

2.1 <u>Combustion</u> (based on 5-days campaign)						
O2 at kiln inlet	1.44	3	3.5	4	5 %O2	•
CO at kiln inlet	0.00			0.05	0.1 %CO	•
Temperature at kiln inlet	968		900	1050	1100 °C	•
Temperature at exit lowest cyclone	847		860	870	°C	•
2.2 Hot meal (based on 5 days-campaign)						
% calcination	93.90	94.25	94.5	96	96.5 %	
SO3	1.23			2.5	%SO3	•
CI	0.10			1	%CI	
K2O	0.97			2	%K2O	•
Sulfur Volatility	0.69			0.7	0.9 -	•
2.3 Main Firing						
Heat distribution to main firing	41.50		40	45	% total fuel	•
Ash input at burning zone	1.86			3	4 % in cli	•
Length of fixed coating	5.00		4	5	x Ø _{kiln}	•
Fine AFR powder in main flame (diam.<0.5mm)	0.00				% total fuel	•
Solid AFR diam.<1.5 mm in main flame	0.00				% total fuel	•
Solid AFR diam<5 mm or foils < 50 mm	0.00				% total fuel	•
					% total fuel	
Comment: all substitution refer to total sub. of the f	uel and can n	ot be accum	nulated			
2.4 Precalcination, secondary firing or MKF						
Heat distribution to precalcination	58.50		55	60	% total fuel	•
Whole tires	0.00			5	% total fuel	•
Lump fuel >50mm	0.00			5	% total fuel	•
Solid AFR < 50 mm	0.00				% total fuel	•
Gas residence time in calciner	3.10	4.5	5		seconds	•
3 MAIN BURNER						
% Primary Air(radial/axial)	8.20	10	12	18	%	•
Axial Momentum	4.10	7	9	11	N/MW	
Coal injection velocity	9.40		25	30	m/s	


Plant: HPHI LG Date: 4/7/

page 81

CHEMISTRY	Current	Min Min	Min	Max	Max Max	Current status
<u>Clinker</u> Lisuid shace 1450% of soin clinker	25.07		24	Max 26		Current status
Liquid phase 1450°C of main clinker	25.07	0.0			% in cli	
CaOfree		0.8	1	1.5	2 % in cli	
% off-spec dinker	2.10			3	5 % in cli	
P2Os in Clinker	0.06			0.3	0.5 % in cli	0
Aikali & Sulfut (based on A/S balance)						
"Calculated" Alk/S - ratio in clinker	3.14	0.06	0.8	1.2	1.3 -	0
"Calculated" SO3 in dinker	0.39			0.8	1 % in cli	0
Alkali input (process point of view)	1.10			1.9	% in cli	0
Chlorine & Dust						
Relevant Clinput from ravymaterials & fuels	128.00			200	200 art di	0
Chlorine output through all cement	0.00			200	<u>300 q/t di</u> q/t cem	
						0
Filler in cement	0.00				% in cem	U
KILN PERFORMANCE						
	Current	Min Min	Min	Max	Max Max	Current status
OEE net	85.50		83		%	0
Rate	95.00		96		%	0
Availability	90.00		90		%	0
MTBF		250	400		hours	
Number of kiln stops	9.00			12	stop/a	0
Stops due to cydones plug-ups	0.00			2	stop/a	0
Refractory consumption (4 years rolling av.)	338.8			500	q/tdi	0
Emissions (belowlegal limits: "Yes" or "No")	Yes			150	-	0
AFR Installation 2: describe installation				(Rice Hu	in	
Storage capacity	0.00		100	Ince Int	# †	0
Eeeding capacity	1.50	14			th	П

A IN INSTANTIAU VIT 2. VES CITIZE INSTANTIAU VIT				TARE LUTIN		
Storage capacity	0.00		100		t	0
Feeding capacity	1.50	14	2		t/h	0
NCV Fluctuation of AFR 2	120.00			125	150 +/-kJ/kq	0
Solid AFR injection velocity (if used at main burner)				m/s	
OEE net	75.00	75	85		%	0
MTBF					hours	

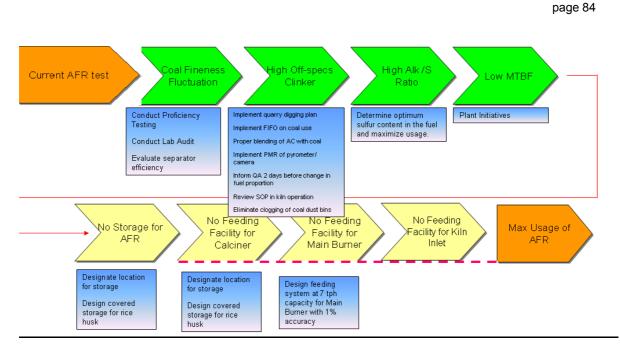
page 82

Plant: Date:

Davao Bottlenecks and potential for AFR use

Note: the values (min, max,...) herebelow are guidelines values and have to be adapted upon the specific plant experience

	Value ampaign) 0.80 2.4 19.87 3.81 1.22				Process Type:	Precalciner
		Min Min	Min	Max	Max Max	Current status
1 Material Preparation (based on 5-days campaig	n)					
1.1 Kiln feed						
LSF fluctuations	0.80			1.2	1.5 sdv	Ø
Dosing fluctuations				0.5	2 %	
Coefficient of variation R90 m	2.4			5	10 %	Ø
1.2 Coal / petcoke (at main burner)						
Fineness at R90 Ŋm	19.87	18	19	21	22 %	Ø
Fineness R90 m fluctuations	3.81			1	1.5 sdv	۲
Fineness at R200 Mm	1.22				%	۲
Dosing fluctuations				0.7	0.95 %	
Pressure fluctuation at the burner within +/-5mbar		80	90	100	100 %	
P fluctuation at the burner within +/- 5 and 7.5mba	r	70	75	80	100 %	
2 KILN OPERATION						


.1 Combustion (based on 5-days campaign)						
O2 at kiln inlet	3.80	3	3.5	4	5 %O2	
CO at kiln inlet	0.01			0.05	0.1 %CO	
Temperature at kiln inlet	1030	950	1000	1050	1100 °C	
Temperature at exit lowest cyclone	<mark>869</mark>	860	865	875	890 °C	•
2.2 Hot meal (based on 5 days-campaign)						
% calcination	95.70	92	94	95	<mark>96</mark> %	
SO3	0.78			4	5 %SO3	
CI				1.5	1.8 %CI	
K2O	1.16			1.5	1.6 %K2O	
Sulfur Volatility				0.7	0.9 -	
2.3 Main Firing						
Heat distribution to main firing	40.00	30	35	40	45 % total fuel	
Ash input at burning zone				3	4 % in cli	
Length of fixed coating	3.08			4	6 x ∅ _{kiln}	
Fine AFR powder in main flame (diam.<0.5mm)	0.00				25 % total fuel	
Solid AFR diam.<1.5 mm in main flame	0.00			12	15 % total fuel	
Solid AFR diam<5 mm or foils < 50 mm	0.00			10	% total fuel	
					% total fuel	
Comment: all substitution refer to total sub. of the fu	uel and can no	t be accum	nulated			
2.4 Precalcination, secondary firing or MKF						
Heat distribution to precalcination	60.00	55	60	65	70 % total fuel	
Whole tires	0.00			5	% total fuel	
Lump fuel >50mm	0.00			5	% total fuel	
Solid AFR < 50 mm	0.00				% total fuel	
Gas residence time in calciner	5.00	4.5	5		seconds	•
3 MAIN BURNER						
% Primary Air(radial/axial)	14.90	10	12	15	20 %	•
Axial Momentum	<u>8.20</u>	7		10	N/MW	•
Coal injection velocity	60.00	20	25	60	65 m/s	

page 83

4 CHEMISTRY						
4.1 <u>Clinker</u>	Current	Min Min	Min	Max	Max Max	Current status
Liquid phase 1450°C of main clinker	25.83		25	26	% in cli	Ø
CaOfree	1.38	0.8	1	1.5	2 % in cli	Ø
% off-spec clinker	<mark>8.8</mark>			3	5 % in cli	۲
P ₂ O ₅ in Clinker				0.45	0.5 % in cli	
4.2 Alkali & Sulfur (based on A/S balance)						
"Calculated" Alk/S - ratio in clinker	1.41	0.75	0.8	1.2	1.3 -	۲
"Calculated" SO3 in clinker	0.52				1.5 % in cli	٩
Alkali input (process point of view)	1.01				1.5 % in cli	Ċ
4.3 Chlorine & Dust						
4.3 <u>Children & Dust</u> Relevant Cl input from raw materials & fuels				200	300 g/t cli	
Chlorine output through all cement				800	1000 g/t cem	
Filler in cement	12.00				% in cem	۲
5 KILN PERFORMANCE						
	Current	Min Min	Min	Max	Max Max	Current statu
OEE net	74.22	75	85		%	۲
Rate	93.74	90	95		%	Ø
Availability	79.18	85	90		%	•
MTBF	112.00	200	400		hours	۲
Number of kiln stops	84.00			40	80 stop/a	•
Stops due to cyclones plug-ups	4.00			5	10 stop/a	Ø
Refractory consumption (4 years rolling av.)	369.90			400	600 g/tcli	٢
Emissions (below legal limits: "Yes" or "No")	Yes				-	O
6 AFR: for each AFR installation individually						
	Current	Min Min	Min	Max	Max Max	
6.1 AFR Installation 1: Existing Raw Coal Hopper /						
Storage capacity	40,000	32400	3600		t	<u>.</u>
Feeding capacity	15.00	45	5		t/h	۲
NCV Fluctuation of AFR 1(Activated Carbon)					+/-kJ/kg	
Solid AFR injection velocity (if used at main burne			20	30	m/s	•
OEE net	100.00	75	85		%	۲
MTBF	250.00	40	50		hours	Ø
6.2 AFR Installation 2: Rice Husk Feeding for Calc						
Storage capacity	0.00	8800			t	0
Feeding capacity	0.00	12.2			t/h	۲
NCV Fluctuation of AFR 2 (rice husk)				1000	+/-kJ/kg	
	r)		20	30	m/s	
Solid AFR injection velocity (if used at main burne	· <u>/</u>					
Solid AFR injection velocity (if used at main burne OEE net	, 	75	85		%	

Example of the fuel mix optimizer

Simulation																	
Clinker volume		1682000	t/year]													
		tons as fired		1		cos	ts as fired	1	I		All prope	rties as fired					
		Main	PC/SF &	% total	Fuel	Cost at	Prep&	a									
	Available on market	burner	МК	heat	category (I,d,g,5,50,	plant gate	Handling costs	Costs at b	urner	NCV	H20	Ash	\$03	K20	Na2O	сі	
Name	tons/year	tons/year	tons/year	%	lump,other)	PHP/t	PHP/t	PHP/t	PHP/GJ	GJ/t	%	%	%	%	%	%	
Traditional fuel																	
Bituminous coal			133'884	59.63	d					24.6	4.8	17.9	0.75				
Heavy oil			1'253	0.90						39.7	0.0	0.0	0.15				
Light oil			89	0.06						38.1	0.0	0.0	2.27				
anthracite			37742	22.86	d					27.3	0.9	18.0	0.46				
				-													
Alternative fuels				-													
Used / waste oils				-										1		No data	
Industrial waste originating t			2769	0.79	50					15.7						No data	
Agricultural waste/rice husk		s)	68'589	15.00	5					12.1	6.8	22.6	0.10			No data	
sorted MSW (AF-non bioma	ass)		15721	5.00	5					17.6						No data	
				-												No data	
				-													
% total heat		0.0	100.0	20.79	%TSR												
Heat consumption:			3'290	kJ/kg cli	S	Spec. act. c	osts of fuel:	0.00	PHP/t cli		PHP						
		Target:	3'300	k l/ka cli	Includes ac	Id heat con-	sumption of	AFR			\$			Legen	d:		
		Id heat by AF:		kJ/kq cli			sumption of				*				Possib	lo	
	aa	id near by /a .	50	norng en											1 03315	10	
0 .													-				
Constraints:		-											⇔			le if kiln system op	
		add Prod		Solids		Lump fuel		Solids < 5		CI input RM						econdary air temp *	*1
		loss by		< 50 mm		SF & MK		main firing		& fuels						lomentum burner	
Mainly process related:		AF:*		PC& SF		OF & MIX		inun ning								ournable raw mix	
Actual		80'316		20.8		-		-		200					Quality	impact likely	
Limit	•	0		30)	5		12		300					_		
		t/year		% TSR		% TSR		% TSR		g/t cli			⇔			influence on proce	
							_								quality	expected. Detailed	d studies
		SO3 in		H ₂ O in		Ash input	1	Fuels for		Alk /S in		Sulfatization			may re	veal additional pote	ential
		clinker				in BZ		hot flame		cli ***		degree***					
Mainly quality related:		CIINKER		BZ		in BZ		**		CII ***		aegree					
Actual		0.26		-		-		-		2.17		46%		solid	Check	input or feeding po	int
Limit		2.0		2	2	3	Min	6	Min***	0.4	Min	83%		0010		. 31-	
		%		%	1	% in cli		% tot heat	Max	1.2	Max	250%		Strong	impact	on quality expected	d
			-		-		-							Ŭ			