TYPE III – OTHER PROJECT ACTIVITIES

Project participants shall apply the general guidelines to small-scale (SSC) clean development mechanism (CDM) methodologies for selected small-scale CDM project activity categories

III.AR. Substituting fossil fuel based lighting with LED/CFL lighting systems

Technology/measure

1. This category comprises activities that replace portable fossil fuel based lamps (e.g. wick-based kerosene lanterns) with battery-charged LED or CFL\(^1\) based lighting systems\(^2\) in residential and/or non-residential applications (e.g. ambient lights, task lights, portable lights).

2. This methodology is applicable only to project lamps whose batteries are charged using one of the following options:\(^3\)

 (a) Charged by a renewable energy system included as part of the project lamp (e.g. a photovoltaic system or mechanical system such as a hand crank charger);

 (b) Charged by a standalone distributed generation system (e.g. a diesel generator set) or a mini-grid, i.e. that is not connected to a national or regional grid;

 (c) Charged by a grid that is connected to regional/national grid.

3. At a minimum project lamps shall be certified by their manufacturer to have a rated average life of at least:

 - 5,000 hours for Option 1, paragraph 11;
 - 10,000 hours for Option 2, paragraph 12.

Rated average life is the life certified by the manufacturer or responsible vendor as being the time at which the lamp’s initial light output will decline by no more than 30%. In addition, for project lamps charged using Option 2(c) as provided in paragraph 2 above, the manufacturer shall certify that the battery-charging-circuit efficiency of the project lamps, at the time of the purchase, is at least 50%. For project lamps charged under option indicated in paragraph 2(b), if the mini-grid or distributed generation system is not entirely powered by renewable energy generation unit(s), the

\(^1\) Light emitting diode or compact fluorescent lamps.

\(^2\) An LED or CFL based lighting system is defined as one or more individual LED or CFL lamps connected to a single rechargeable battery system. These systems may be portable or fixed. LED lamps may consist of one or more diodes. For the purposes of this methodology, a single LED or CFL based lighting system is referred to as the ‘project lamp’ throughout this document.

\(^3\) Project lamps may be charged by any of the listed options, however each individual project lamp shall be charged by only one of the charging options (for example, 10,000 project lamps may be charged by photovoltaic (PV) systems and 10,000 may be charged by a grid, but none of the lamps may be charged by both a grid and a PV system).
III.AR. Substituting fuel based lighting with LED/CFL lighting systems (cont)

The manufacturer shall certify that the project lamp’s battery charging circuit efficiency, at the time of purchase, is at least 50%.

4. Project lamps shall have a warranty of a minimum of one year. At a minimum, the warranty shall cover free replacement or repair of any failed lamps, batteries and where applicable solar panels. The warranty shall be provided to end users of the project lamps. In a situation where the project lamps are distributed through intermediaries, the one year warranty shall commence from the time that the project lamps are distributed to end-users.

5. Project lamps shall meet or exceed the following minimum performance characteristics, which should be proven by third-party test results:

 (a) **Light Output:** luminous flux of 20 lumens or illuminance of 25 lux over an area $\geq 0.1\,\text{m}^2$ when suspended at a distance of 0.75 meters or self-supported. The light output over a 2,000 hour lumen maintenance test should not decline by more than 20% for Option 1 (paragraph 11) or 15% for Option 2 (paragraph 12);

 (b) **Run Time and Battery Capacity:** Daily Burn Time (DBT)4 shall meet the following requirements:

 (i) DBT shall be equal to or greater than 3.5 hours;

 (ii) For charging option 2(a) the autonomous time of the project lamps shall meet the following requirements:

 - For Option 1, paragraph 11, the autonomous time shall be equal to or greater than 150% than the DBT of the project lamps;
 - For Option 2, paragraph 12, the autonomous time shall be equal to or greater than 150% of the DBT of the project lamps;

 (iii) For charging options 2(b) and 2(c) the autonomous time of the project lamps shall meet the following requirements:

 - For Option 1, paragraph 11, the autonomous time shall be equal to or greater than 200% of the DBT of the project lamps;
 - For Option 2, paragraph 12, the autonomous time shall be equal to or greater than 200% of the DBT of the project lamps;

 (iv) For charging with solar PV under option 2(a) the Solar Run Time for the project lamp in each month of the year (as determined per paragraph 7(g)) shall be greater than or equal to the DBT;

 (v) For charging option per 2(b) or 2(c), the project lamp shall be fully charged after eight hours of charging.

4 Definitions of terms are included in appendix I.
6. The project design document shall explain the proposed distribution method of the project lamps. It shall also explain how the proposed project activity will:

 (a) Ensure that the replaced baseline lamps are those that directly consume fossil fuel. This can be done through documentation of the common practice of fuel usage for lighting in the project region (e.g. based on representative sample surveys, official data or peer reviewed literature) that demonstrates that fossil fuel is a commonly used fuel for lighting.

 (b) Eliminate potential double counting of emission reductions that could occur, for example, if more than one entity (e.g. lamp manufacturers, suppliers of solar and/or battery equipment, etc.) claims credit for emission reductions for the project lamps. At a minimum, project lamps shall be marked as CDM project lamps.

 (c) Ensure compliance with prevailing regulations pertaining to the use and disposal of batteries.

7. The project design document shall include the minimum requirements for the design specifications of project lamps including the following specifications:

 (a) Lamp wattage (in Watts) and luminous flux output (in lumens);

 (b) Rated lamp life (in hours);

 (c) Where applicable, the type and rated capacity of the renewable energy equipment used for battery-charging (in Watts);

 (d) Type (e.g. NiMH, Lead-Acid, Li-ion), and rated capacity of the batteries (in Ampere hours);

 (e) Type of charge controller (e.g. active or passive);

 (f) Autonomous time and DBT;

 (g) Solar Run Times(s) (SRT) for products with solar energy charging systems. If regional solar data are available, the maximum, minimum and average estimated SRT values for each month of a typical year shall be provided. If regional solar data are not available the standard solar day (5 kWh/m²) shall be used to estimate SRT;

 (h) Where applicable, the amount of time to fully charge the product using mechanical means or a centralized charging system (e.g. the national grid);

 (i) Physical protection against environmental factors (e.g. rain, heat, insect ingress).

8. Emission reductions can only be claimed for up to five The project activity shall restrict the number of project lamps, distributed through the project activity, per to no more than five per each household or per each business location (e.g. for commercial applications such as shops). For projects using Option 1 as per paragraph 11, compliance with this requirement can be demonstrated with documentation of the distribution procedures instead of by ex post recording of lamps distributed in each household. Any lamp distributed to a household or business location beyond the
Indicative simplified baseline and monitoring methodologies for selected small-scale CDM project activity categories

III.AR. Substituting fuel based lighting with LED/CFL lighting systems (cont)

9. Measures are limited to those that result in emissions reductions of less than or equal to 60 kt CO₂ equivalent annually.

Boundary

10. The project boundary includes the project lamps as well as the charging systems, as follows:

(a) If the project lamps are charged by a renewable energy system, then the project boundary includes the physical, geographical site of the renewable energy system;

(b) If the project lamps are charged by a mini-grid or a distributed generation system, then the project boundary includes the physical, geographical site of the mini-grid or distributed generation system;

(c) If the project lamps are charged by a regional or national grid, then the project boundary includes the physical, geographical site of the regional/national grid.

Lamp effective useful life

11. Option 1: Project lamps are assumed to operate for two years after distribution to end-users. Therefore, under this option, emission reductions may only be claimed for two years.

12. Option 2: Project lamps are assumed to operate for up to seven years after distribution to end-users, and thus emission reductions can be claimed for up to seven years per project lamp, if all of the following conditions are met.

(a) At a minimum, project lamps must be certified by their manufacturer to have a useful life of 10,000 hours. Within this time span, the relative luminous flux shall not decrease by more than 30% as per equation 1. Such claims shall be confirmed by a third-party testing organization using an applicable standard and testing protocol. As an alternative to long-term measurement of light output over the full lifetime of the lamp, a shortened measurement period of 2,000 hours may be chosen. If a 2,000 hour test period is used, the relative luminous flux shall not decrease by more than 15% during the 2,000 hours of continuous operation. As per the principles indicated in AMS-II.J “Demand-side activities for efficient lighting technologies”, if the average life value is not available ex ante, it shall be made available for verification.

5 The crediting period of the project activity is distinct from the lamp effective useful life and the standard fixed or renewable period for CDM projects should be used. Project lamps may be distributed during multiple years as long as the elapsed life of lamps can be unambiguously tracked to ensure that emission reductions are not credited beyond two years (for Option 1) or seven years (for Option 2) for any given project lamp. In addition, both Options 1 and 2 may be used in a single project activity, but the option selected for each lamp must be specified before the distribution of the lamp.
Indicative simplified baseline and monitoring methodologies for selected small-scale CDM project activity categories

III.AR. Substituting fuel based lighting with LED/CFL lighting systems (cont)

\[\phi_{rel} = \frac{\phi_r(t)}{\phi_r(t_0)} \]
(1)

Where:

- \(\phi_{rel} \) = Relative luminous flux after time \(t \) (shall be \(\geq 85\% \) after 2,000 hrs and \(\geq 70\% \) after 10,000 hrs)
- \(\phi_r(t_0) \) = Initial luminous flux
- \(\phi_r(t) \) = Luminous flux after time \(t \)

(b) The project lamps use a replaceable, chargeable battery. In addition, there must be documented measures in place to ensure that lamp owners have access to replacement batteries of comparable quality;

(c) With regard to physical ingress and water protection, the project lamps shall achieve a minimum level of protection, based on the type of lamp, in accordance with IEC 60529, or an equivalent national standard, or the approved norms indicated in appendix 1;

(i) For lamps with integrated solar modules or solar modules with a cable length less than three meters, the ingress protection (IP) class of the lamp shall be 43 or greater; or alternatively the lamp shall be protected from an equivalent level of environmental exposure;

(ii) For lamps with integrated energy storage (i.e. battery) and external solar modules with cable lengths greater than 3 meters, the IP class of the lamp shall be 41 or greater; or alternatively the lamp shall be protected from an equivalent level of environmental exposure;

(iii) For lamps with separate energy storage, light points, and external solar modules with cable lengths greater than three meters, the IP class of the storage base unit and light points shall be 21 or greater; or alternatively the lamp shall be protected from an equivalent level of environmental exposure;

(d) Conditions 12(a) and 12(c) are confirmed by a third-party testing organization based on sample tests of project lamps using applicable national standards where such are available, or alternatively, the standards or test protocols indicated in appendix I of this methodology may be used. The laboratory conducting and certifying the tests shall comply with the requirements of a relevant national or international standard, e.g. ISO/IEC 17025. If the testing results are not available ex ante, they shall be made available at project verification;

(e) Project lamps shall be marked for clear, unique identification to associate them with each unique CDM project.

6 The size of the sample and method of sample procurement shall be in line with the chosen testing standard.
Indicative simplified baseline and monitoring methodologies for selected small-scale CDM project activity categories

III.AR. Substituting fuel based lighting with LED/CFL lighting systems (cont)

Baseline emissions

13. This methodology provides for a default annual baseline emissions factor for the project lamps. The following assumptions are made about the equivalent baseline lighting system:

\[DV = FUR \times O \times U \times EF / 1000 \times LF \times n \times NTG \]

(2)

Where:

- \(DV \) Lamp Emission Factor (default is 0.0928 tCO₂e per project lamp)
- \(FUR \) Fuel use rate (0.0325 liters/hour)
- \(O \) Utilization rate (3.5 hours/day)
- \(U \) Annual utilization (365 days/year)
- \(EF \) Fuel emissions factor (2.4 kgCO₂/liter)
- \(LF \) Leakage factor (1.0)
- \(n \) Number of fuel-based lamps replaced per project lamp (1.0)
- \(NTG \) Net-to-gross adjustment factor (1.0)

14. Baseline emissions are calculated per equation (3).

\[BE_y = DV \times GF_y \times DB_y \]

(3)

Where:

- \(BE_y \) Baseline emissions per project lamp in year \(y \) (tCO₂e)
- \(GF_y \) Grid Factor in year \(y \),
 - Equal to 1.0 when charging option defined in paragraph 2(a) is used;
 - Equal to 1.0 if the project activity is for off-grid households/communities (defined as no grid access or less than 12 hours grid availability per day on an annual average basis);
 - Otherwise it is equal to 1.0 minus (the fraction of time grid is available to the target households and communities/users in the region of project activity)

7 Based on the demonstration that fossil fuel is the predominant practice for lighting as per paragraph 6(a), it is assumed all baseline emissions are from the consumption of fossil fuel burning for lighting.
Indicative simplified baseline and monitoring methodologies for selected small-scale CDM project activity categories

III.A.R. Substituting fuel based lighting with LED/CFL lighting systems (cont)

DB_y Dynamic Baseline Factor (change in baseline fuel, fuel use rate, and/or utilization during crediting period) in year y. Calculated as either:
- Option 1: default of 1.0 in the absence of relevant information;
- Option 2: value of $1.0 + FF_g$ where FF_g is the documented national growth rate of kerosene fuel use in lighting from the preceding years (use the most recent available data for a three or five years average (fraction)).

15. Alternative values for parameters in equation (2) to result in a different value for DV (e.g. fuel use rate, utilization rate) can only be used if adequate research/monitoring and documentation is provided by the project proponent (e.g. strategic surveys and research conducted by national or local organizations, initiatives by international organizations or non-governmental organizations or the project proponent to collect reliable and comprehensive data).

Project emissions

16. There are no project emissions $(PE_y = 0)$ if the project lamp charging mechanism utilized is as defined in:
 - (a) Paragraph 2(a); or
 - (b) Paragraph 2(b) if the minigrid or distributed generation system is entirely powered by renewable energy generation unit(s).

17. There are project emissions if the project lamp charging mechanism utilized is as defined in:
 - (a) Paragraph 2(c); or
 - (b) Paragraph 2(b) if the minigrid or distributed generation system is not entirely powered by renewable energy generation unit(s).

18. Project emissions per project lamp are calculated as:

\[PE_{y,i,j} = W_i \times EF_{CO_2,elec,y,i,j} \times \left(1/Eff_{i,j}\right) \times (D \times H) \times (1 + TD_j) \times 10^{-6} \]

Where:
- $PE_{y,i,j}$ Average project emissions in year y (tCO$_2$e) per project lamp
- i Type of project lamp
- j Type of charging mechanism as per paragraph 2
- W_i Wattage of project lamps distributed to end users, of type i (Watts)
- $Eff_{i,j}$ Battery charging efficiency of lamps distributed to end users, as documented by lamp manufacturer, of type i for charging type j
- D Days of operation of project lamps per year, use a value of 365
Indicative simplified baseline and monitoring methodologies for selected small-scale CDM project activity categories

III.AR. Substituting fuel based lighting with LED/CFL lighting systems (cont)

H

Hours of operation of project lamps per day (DBT), use a value of 3.5 hours

\[EF_{CO2,ELEC,y,j} \]

Grid emission factor in year \(y \) calculated in accordance with the provisions in AMS-I.D “Grid connected renewable electricity generation” or AMS-I.F “Renewable electricity generation for captive use and mini-grid” depending on the charging mechanism \(j \) (tCO2/MWh)

\[TD_y \]

Average annual technical grid losses (transmission and distribution) during year \(y \) for the grid serving the locations where the devices are installed, expressed as a fraction. This value shall not include non-technical losses such as commercial losses (e.g. theft/pilferage). The average annual technical grid losses shall be determined using recent, accurate and reliable data available for the host country. This value can be determined from recent data published either by a national utility or an official governmental body. Reliability of the data used (e.g. appropriateness, accuracy/uncertainty, especially exclusion of non technical grid losses) shall be established and documented by the project participant. A default value of 10% shall be used for average annual technical grid losses, if no recent data are available or the data cannot be regarded as accurate and reliable.

Emissions reduction

19. Annual emission reductions are calculated as:

\[
ER_y = \sum_{i,j} N_{i,j} \times \left(BE_{y,i} - PE_{y,i,j} \right) \times OF_{y,i,j} \tag{5}
\]

Where:

\(ER_y \)

Emission reductions in year \(y \) (tCO2e)

\(N_{i,j} \)

Number of project lamps distributed to end users of type \(i \) with charging method \(j \)

\(OF_{y,i,j} \)

Percentage of project lamps distributed to end users that are operating and in service in year \(y \), for each lamp type \(i \) and charging method \(j \). Assumed to be equal to 100% for years 1, 2 and 3, and equal to the value determined in paragraph 2221, for years 4, 5, 6 and 7.

The emission reductions shall be considered from the date of distribution of the project lamps to end-users.

8 The years refer to the operational years of project lamps (e.g. for project lamps distributed in year 3 of the crediting period years 1, 2 and 3 relate to the years 3, 4 and 5 of the crediting period and so forth).
Indicative simplified baseline and monitoring methodologies for selected small-scale CDM project activity categories

III.AR. Substituting fuel based lighting with LED/CFL lighting systems (cont)

Monitoring

20. Monitoring includes: (i) Recording of project lamp distribution data; and (ii) Where Option 2, paragraph 12 is chosen ex post monitoring surveys to determine percentage of project lamps distributed to end-users that are operating and in service in year \(y \).

21. During project activity implementation, the following data are to be recorded:

 (a) Number of project lamps distributed to end-users under the project activity, identified by the type of project lamps (lamp wattage, battery type, charging method, the date of distribution);\(^9\)

 (b) Data to unambiguously identify each recipient of a project lamp, for all the project lamps distributed that will claim emission reductions for up to seven years, as per Option 2, paragraph 12.

22. For project lamps that will claim emission reductions for up to seven years, ex post monitoring surveys to determine percentage of project lamps\(^9\) distributed to end-users that are operating and in service will be conducted during the third year of the crediting period. While the percentage of project lamps that are operating and in service can be assumed to equal 100\% in year 1, 2, and 3, the result of ex post monitoring survey undertaken during the third year shall be used in years 4, 5, 6 and 7, as per paragraph 19. Only project lamps with a unique project marking (per paragraphs 12(e) or 25) can be counted as operating and in service. While project lamps replaced as part of a regular maintenance or warranty program can be counted as operating, project lamps cannot be replaced as part of the survey process and then counted as operating.

23. The following survey principles shall be followed for activities related to determining number of project lamps in service and operating under the project:

 (a) The sampling size is determined by minimum 90\% confidence interval and the 10\% maximum error margin; the size of the sample shall be no less than 100;

 (b) Sampling must be statistically robust and relevant, i.e. the survey has a random distribution and is representative of the target population (size, location);

\(^9\) Or a conservative estimation thereof based on distribution records. In the case of project activities which do not involve direct distribution of project lamps to end-users, but instead involve distribution of project lamps through intermediaries, the average number of days between the date on which project lamps are delivered to intermediaries and the date on which the project lamps are distributed from the intermediaries to end-users can be determined using either survey methods or by using a default value of 120 days. The survey methods may either be a census of intermediaries (if the number of intermediaries is equal to less than 50) or using sampling methods in accordance with the “Standard for Sampling and Surveys for CDM Project Activities and Programme of Activities”. However, the date of delivery of project lamps to all intermediaries shall be directly recorded with no recourse to sampling.

\(^10\) If project lamps are distributed with different charging methods, per paragraph 2(a), 2(b) and/or 2(c), then the percentage operating in year 3 should be determined per each category of charging method, see equation (5).
Indicative simplified baseline and monitoring methodologies for selected small-scale CDM project activity categories

III.AR. Substituting fuel based lighting with LED/CFL lighting systems (cont)

(c) The method to select respondents for interviews is random;
(d) The survey is conducted by site visits;
(e) Only persons over age 12 are interviewed;
(f) The PDD must contain the design details of the survey.

Project activity under a programme of activities

24. If monitoring is required, per paragraphs 20-23, to determine the percentage of project lamps distributed to end-users that are operating and in service, such monitoring will take place in the third year of crediting period of each CPA and the results shall be used for operational years 4, 5, 6 and 7 of the project lamps of that CPA.

25. For Option 2, paragraph 12, project lamps shall be marked for clear, unique identification to associate them with each unique CPA.
Appendix I
DEFINITIONS

Daily Burn Time (DBT): total number of hours per day that the lighting system must provide light that is bright enough to satisfy the light output requirements stipulated in paragraph 5(a). DBT is expressed in hours.

Autonomous Time or Autonomous Run Time (AT): time measured from switching on the light in a mode that is bright enough to satisfy the light output requirements stipulated in paragraph 5(a) to the point in time where the light output reaches 70% of its initial brightness or where low voltage triggers battery cut-off, whichever is earlier. The test must be performed with a fully charged battery. AT indicates maximum possible burn time or run time and is also known as battery autonomy. AT is expressed in hours.

Solar Run Time (SRT): operational time in a mode that is bright enough to satisfy the light output requirements stipulated in paragraph 5(a) from a day of solar charging under standard solar day conditions. Although a “standard solar day” can be defined as 5 kWh/m² incident radiation, actual SRT depends on geography, weather, shading, and user behavior. Thus, if regional solar data are available, such data shall be used to calculate SRT instead of the 5 kWh/m² value. SRT may be computed using simulation software or it can be computed using the method indicated in the test procedure included below. SRT is expressed as a number of hours of operation.

Ambient lights: Lights used to either fully or partly illuminate a room.

Task lights: Lights used to illuminate a defined working area.

Portable lamps: Portable lamps have self-contained energy sources, are easily transported by hand, and are not permanently connected via piping to a central energy source.

Norms, specifications and test procedures: Existing test procedures and specifications for project lamps or other off-grid lighting systems, batteries, charge controllers and solar modules include:

(a) “Lighting Africa Quality Test Method” (the most recent version of this document should be used; the document is available at <http://lightingafrica.org/lighting-africa-quality-test-method-la-qtm>);
(b) PVGAP PVRS 5/5A, batteries;
(c) IEC 61951, NiMH batteries;
(d) IEC 61960, Li-ion batteries;
(e) CIE 127, LEDs;
(f) PVGAP PVRS 11A, Solar lights;
(g) IEC 62124 PV stand-alone systems, design verification and others.
Indicative simplified baseline and monitoring methodologies for selected small-scale CDM project activity categories

III.AR. Substituting fuel based lighting with LED/CFL lighting systems (cont)

- - - - -

History of the document

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Nature of revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.0</td>
<td>20 July 2012</td>
<td>EB 68, Annex #</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revision to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Account for suppressed demand in accordance with the suppressed demand guidelines;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Exclude the battery certification requirement for systems charged by renewable energy sources;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Allow the use of survey method or a default value of 120 days to estimate the date of distribution of project lamps;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide clarity on the warranty requirements.</td>
</tr>
<tr>
<td>02</td>
<td>EB 65, Annex 26 25 November 2011</td>
<td>To include:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Specifications to ensure high quality, high performance lighting products are distributed under the project (e.g. lumen testing, IP class); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Expand the applicability to include CFLs, including modifying the title.</td>
</tr>
<tr>
<td>01</td>
<td>EB 58, Annex 19 26 November 2010</td>
<td>Initial adoption.</td>
</tr>
</tbody>
</table>

Decision Class: Regulatory
Document Type: Standard
Business Function: Methodology