Draft Large-scale Consolidated Methodology

ACM0001: Flaring or use of landfill gas

Version 14.0 - Draft

Sectoral scope(s): 13
COVER NOTE

1. Procedural background

38. The Board considered regulatory documents relating to the introduction of new provisions or changes to existing ones related to PoAs and adopted amendments to the revised Project standard (PS), Validation and Verification Standard (VVS), Project Cycle Procedure (PCP), “Standard for demonstration of additionality, development of eligibility criteria and application of multiple methodologies for programme of activities”, “Guidelines for completing the programme design document form for CDM programmes of activities”, and “Glossary of CDM terms”. The amendments include:

(a) A revised definition of the start date of a PoA and the start date of a component project activity (CPA), including an option for the coordinating/managing entity to notify the designated national authorities (DNA) and the secretariat of their intention to seek the CDM status to signify the start date of the PoA;

(b) Clarification that for PoAs applying more than one technology/measure or more than one methodology, specific case CPA-DDs for each technology/measure and each methodology or combinations thereof would be required and that these specific case CPA-DDs shall be registered before any inclusion of CPA-DD of same type, however the registration can take place either at the time of registration of the PoA or at any time during the crediting period. In this regard the Board agreed that the requirements specified in the PS have precedence over any requirement for specific case CPA-DDs (also referred to as real case or actual case CPA-DDs) indicated in an approved methodology. The Board requested the Methodologies Panel (Meth Panel) to propose, as a matter of urgency, revisions to methodologies, where relevant, to ensure that the requirements specified in the methodologies are consistent with the requirements specified in the PS;

(c) Clarification that a PoA shall be updated every seven years (every 20 years for an A/R PoA), counting from the date of its registration, and a fixed or renewable crediting period may be chosen for each CPA. In the case of a CPA with a renewable crediting period, the first renewal of the CPA shall be conducted seven years after the start date of the crediting period of the CPA.

39. The Meth Panel agreed at its 59th meeting to revise this methodology (as well as another five large-scale methodologies ACM0002, ACM0014, ACM0022, AM0009 and ACM0010) that contain requirements for specific case CPA-DDs and frequency of updating of eligibility criteria by deleting these requirements as these requirements are specified in the standards mentioned above. In addition, the number of editorial changes has been applied to the methodology to improve its consistency and readability.

2. Purpose

40. The revision aims to improve the consistency in existing regulations related to PoAs. The purpose of the call for public input aims to facilitate the work of the Meth Panel on the
revision of the methodology taking into account feedback/comments received through wider consultation process.

3. **Key issues and proposed solutions**

41. The draft revision removes requirements for specific case CPA-DDs and frequency of updating of eligibility criteria as these requirements are specified in the relevant standards.

4. **Impacts**

42. The revision of the methodology, if approved, will improve the consistency in existing regulations related to PoAs.

5. **Proposed work and timelines**

43. A call for public inputs on the proposed draft revision of the methodology will be launched. The received public inputs, if any submitted, will be considered to inform the revision of the methodology. If no inputs will be received, the Meth Panel will recommend the draft revised methodology to the Board for approval.

6. **Recommendations to the Board**

44. Not applicable (call for public input).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>SCOPE, APPLICABILITY, AND ENTRY INTO FORCE</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.1. Scope</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2. Applicability</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.3. Entry into force</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>NORMATIVE REFERENCES</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3.1. Selected approach from paragraph 48 of the CDM modalities and</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>procedures</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DEFINITIONS</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>BASELINE METHODOLOGY</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>5.1. Project boundary</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>5.2. Procedure for estimating the end of the remaining lifetime of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>existing equipment</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>5.3. Procedure for the selection of the most plausible baseline</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>scenario and demonstrate additionality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3.1. Identification of the baseline fuel for electricity generation</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>by captive fossil fuel fired power plants and/or heat generation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4. Baseline emissions</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5.4.1. Step A: Baseline emissions of methane from the SWDS</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>(BE_{CH4,y})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5. Amount of methane destroyed by flaring (F_{CH4,flared,y})</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>5.5.2. Step B: Baseline emissions associated with electricity</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>generation (BE_{EC,y})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5.3. Step C: Baseline emissions associated with heat generation</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(BE_{HG,y})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.6. Project emissions</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>5.7. Leakage</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>5.8. Emission reductions</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>5.9. Project activity under a programme of activities</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>5.10. Data and parameters not monitored</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>MONITORING METHODOLOGY</td>
<td>28</td>
</tr>
</tbody>
</table>

4 of 35
6.1. Data and parameters monitored
1. Introduction

The following table describes the key elements of the methodology:

<table>
<thead>
<tr>
<th>Typical projects</th>
<th>Capture of landfill gas (LFG) and its flaring and/or use to produce energy and/or use to supply consumers through natural gas distribution network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of GHG emissions mitigation action</td>
<td>GHG destruction: Destruction of methane emissions and displacement of a more-GHG-intensive service</td>
</tr>
</tbody>
</table>

2. Scope, applicability, and entry into force

2.1. Scope

This methodology applies to project activities that include the destruction of methane emissions and displacement of a more-GHG-intensive service by capturing landfill gas from the landfill site and/or flaring and/or using to produce energy (i.e. electricity, thermal energy); and/or using to supply consumers through natural gas distribution network.

2.2. Applicability

The methodology is applicable under the following conditions:

(a) Install a new LFG capture system in a new or existing SWDS; or

(b) Make an investment into an existing LFG capture system to increase the recovery rate or change the use of the captured LFG, provided that:

 (i) The captured LFG was vented or flared and not used prior to the implementation of the project activity; and

 (ii) In the case of an existing active LFG capture system for which the amount of LFG cannot be collected separately from the project system after the implementation of the project activity and its efficiency is not impacted on by the project system: historical data on the amount of LFG capture and flared is available;

(c) Flare the LFG and/or use the captured LFG in any (combination) of the following ways:

 (i) Generating electricity;
(ii) Generating heat in a boiler, air heater or kiln (brick firing only) or glass melting furnace;¹ and/or

(iii) Supplying the LFG to consumers through a natural gas distribution network;

(d) Do not reduce the amount of organic waste that would be recycled in the absence of the project activity.

4. The methodology is only applicable if the application of the procedure to identify the baseline scenario confirms that the most plausible baseline scenario is:

(a) Release of LFG from the SWDS; and

(i) In the case that the LFG is used in the project activity for generating electricity and/or generating heat in a boiler, air heater, glass melting furnace or kiln;
 a. For electricity generation: that electricity would be generated in the grid or in captive fossil fuel fired power plants; and/or
 b. For heat generation: that heat would be generated using fossil fuels in equipment located within the project boundary.

5. This methodology is not applicable:

(a) In combination with other approved methodologies. For instance, ACM0001 cannot be used to claim emission reductions for the displacement of fossil fuels in a kiln or glass melting furnace, where the purpose of the CDM project activity is to implement energy efficiency measures at a kiln or glass melting furnace;

(b) If the management of the SWDS in the project activity is deliberately changed during the crediting in order to increase methane generation compared to the situation prior to the implementation of the project activity.

6. The applicability conditions included in the tools referred to above also apply.

2.3. Entry into force

7. Not applicable.

3. Normative references

8. The consolidated baseline and monitoring methodology is based on the following proposed new methodologies:

(a) “AM0002: Greenhouse Gas Emission Reductions through Landfill Gas Capture and Flaring” where the baseline is established by a Public Concession Contract (approved based on proposal “NM0004 rev: Salvador da Bahia LFG project”, whose project design document and baseline study, monitoring and verification plans were developed by ICF Consulting (version 03, June 2003);

¹ For claiming emission reductions for other heat generation equipment (including other products in kilns), project participants may submit a revision to this methodology.
(b) “AM0003: Simplified financial analysis for LFG capture projects” (approved based on proposal “NM0005: Nova Gerar LFG to energy project”, whose project design document and baseline study, monitoring and verification plans were developed by EcoSecurities Ltd. (version 14, July 2003) for the Carbon Finance Unit of the World Bank);

(c) “AM0010: Landfill gas capture and electricity generation projects” where LFG capture is not mandated by law (approved based on proposal “NM0010-rev: Durban-landfill-gas-to-electricity project”, whose project design document and baseline study, monitoring and verification plans were developed by Prototype Carbon Fund of the World Bank (April 2003);

(d) “AM0011: Landfill gas recovery with electricity generation and no capture or destruction of methane in the baseline scenario” (approved based on proposal “NM0021: Cerupt methodology for LFG recovery”, whose project design document and baseline study, monitoring and verification plans were developed by Onyx (July 2003).

9. The methodology also refers to the latest approved version of the following methodological tools:

(a) "Emissions from solid waste disposal sites";

(b) "Combined tool to identify the baseline scenario and demonstrate additionality";

(c) "Tool to determine project emissions from flaring gases containing methane “Project emissions from flaring”;

(d) "Tool to calculate baseline, project and/or leakage emissions from electricity consumption";

(e) "Tool to calculate project or leakage CO\textsubscript{2} emissions from fossil fuel combustion";

(f) "Tool to determine the remaining lifetime of equipment";

(g) "Tool to determine the baseline efficiency of thermal or electric energy generation systems";

(h) "Tool to determine the mass flow of a greenhouse gas in a gaseous stream".

10. For more information regarding the approved methodologies and the tools as well as their consideration by the Executive Board (hereinafter referred to as the Board) of the clean development mechanism (CDM) CDM Executive Board (the Board) please refer to <http://cdm.unfccc.int/goto/MPappmeth>.

3.1. Selected approach from paragraph 48 of the CDM modalities and procedures

11. “Existing actual or historical emissions, as applicable”;

or

12. “Emissions from a technology that represents an economically attractive course of action, taking into account barriers to investment.”
4. Definitions

13. The definitions contained in the Glossary of CDM terms shall apply.

14. For the purpose of this methodology the following definitions apply:

(a) Continuous brick kiln - A brick kiln where bricks are loaded continuously into the kiln, rather than in batches. Continuous brick kilns are distinguished as moving ware kilns and moving fire annular kilns. Moving ware kilns include tunnel and vertical shaft kilns. Moving fire annuluar kilns use Hoffmann, Bull's trench and Zig-zag technologies;

(b) Existing LFG capture system - An existing active LFG capture system is a system that has been in operation in the last calendar year prior to the start of the operation of the project activity;

(c) LFG capture system - A system to capture LFG. The system may be passive, active or a combination of both active and passive components. Passive systems capture LFG by means of natural pressure, concentration, and density gradients. Active systems use mechanical equipment to capture LFG by providing pressure gradients. Captured LFG can be vented, flared or used;

(d) Intermittent brick kiln - Bricks are loaded into the kiln and fired in batches. Types include Clamp, Scotch and Scove technologies;

(e) Landfill gas (LFG) - The gas generated by decomposition of waste in a SWDS. LFG is mainly composed of methane, carbon dioxide and small fractions of ammonia and hydrogen sulphide;

(f) Reference conditions - Reference conditions are defined as 0°C (273.15 K, 32°F) and 1 atm (101.325 kN/m², 101.325 kPa, 14.69 psia, 29.92 in Hg, 760 torr);

(g) Solid waste - Material that is unwanted and insoluble (including gases or liquids in cans or containers). Hazardous waste is not included in the definition of solid waste;

(h) Solid waste disposal site (SWDS) - Designated areas intended as the final storage place for solid waste.

5. Baseline methodology

5.1. Project boundary

15. The project boundary of the project activity shall include the site where the LFG is captured and, as applicable:

(a) Sites where the LFG is flared or used (e.g. flare, power plant, boiler, air heater, glass melting furnace, kiln or natural gas distribution network);

(b) Captive power plant(s) (including emergency diesel generators) or power generation sources connected to the grid, which are supplying electricity to the project activity;
(c) Captive power plant(s) (including emergency diesel generators) or power generation sources connected to the grid, which are supplying electricity in the baseline that is displaced by electricity generated by captured LFG in the project activity; and

(d) Heat generation equipment or sources which are supplying heat in the baseline that is displaced by heat generated by captured LFG in the project activity.

Table 2. Summary of greenhouse gases and sources included in and excluded from the project boundary

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>Included</th>
<th>Justification/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions from decomposition of waste at the SWDS site</td>
<td>CH₄</td>
<td>Yes</td>
<td>The major source of emissions in the baseline</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>No</td>
<td>N₂O emissions are small compared to CH₄ emissions from SWDS. This is conservative</td>
</tr>
<tr>
<td></td>
<td>CO₂</td>
<td>No</td>
<td>CO₂ emissions from decomposition of organic waste are not accounted since the CO₂ is also released under the project activity</td>
</tr>
<tr>
<td>Emissions from electricity generation</td>
<td>CO₂</td>
<td>Yes</td>
<td>Major emission source if power generation is included in the project activity</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>No</td>
<td>Excluded for simplification. This is conservative</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>No</td>
<td>Excluded for simplification. This is conservative</td>
</tr>
<tr>
<td>Emissions from heat generation</td>
<td>CO₂</td>
<td>Yes</td>
<td>Major emission source if heat generation is included in the project activity</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>No</td>
<td>Excluded for simplification. This is conservative</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>No</td>
<td>Excluded for simplification. This is conservative</td>
</tr>
<tr>
<td>Emissions from the use of natural gas</td>
<td>CO₂</td>
<td>No</td>
<td>Excluded for simplification. This is conservative</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Yes</td>
<td>Major emission source if supply of LFG through a natural gas distribution network is included in the project activity</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>No</td>
<td>Excluded for simplification. This is conservative</td>
</tr>
<tr>
<td>Project activity</td>
<td>CO₂</td>
<td>Yes</td>
<td>May be an important emission source</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>No</td>
<td>Excluded for simplification. This emission source is assumed to be very small</td>
</tr>
<tr>
<td>Source</td>
<td>Gas</td>
<td>Included</td>
<td>Justification/Explanation</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>the project activity</td>
<td>N₂O</td>
<td>No</td>
<td>Excluded for simplification. This emission source is assumed to be very small</td>
</tr>
<tr>
<td>Emissions from electricity consumption due to the project activity</td>
<td>CO₂</td>
<td>Yes</td>
<td>May be an important emission source</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>No</td>
<td>Excluded for simplification. This emission source is assumed to be very small</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>No</td>
<td>Excluded for simplification. This emission source is assumed to be very small</td>
</tr>
</tbody>
</table>

5.2. **Procedure for estimating the end of the remaining lifetime of existing equipment**

16. This procedure applies if LFG is used in equipment that was in operation prior to the implementation of the project activity.

17. For each item of equipment which was in operation prior to the implementation of the project activity and in which the captured LFG is used after the implementation of the project activity, project participants shall estimate its remaining lifetime by applying the “Tool to determine the remaining lifetime of equipment”. These items of equipment and their remaining lifetime shall be recorded in the CDM-PDD.

18. At the end of the remaining lifetime of each item of equipment, the procedure for the selection of the most plausible baseline scenario related to electricity and/or heat generation shall be updated in order to determine the most plausible baseline fuel that would be used after installation of the new equipment in the absence of the CDM project activity. At the same time, the parameters related to this item of equipment shall also be re-estimated according to the procedures in this methodology used to make the original estimation (for example the baseline fuel may change and this then has impacts on the emission factor for this baseline fuel).

5.3. **Procedure for the selection of the most plausible baseline scenario and demonstrate additionality**

19. Identify the baseline scenario and demonstrate additionality using the “Combined tool to identify the baseline scenario and demonstrate additionality” and following the requirements below.

20. In applying Step 1 of the tool, baseline alternatives for the destruction of LFG, shall take into consideration, inter alia, the following alternatives:

 (a) LFG1: The project activity implemented without being registered as a CDM project activity (i.e. capture and flaring or use of LFG);

2 Depending on the project activity, relevant items of equipment may include power plants, boilers, air heaters, glass melting furnace, or kilns.
(b) LFG2: Atmospheric release of the LFG or capture of LFG and destruction through flaring to comply with regulations or contractual requirements, or to address safety and odour concerns;

(c) LFG3: LFG is partially not generated because part of the organic fraction of the solid waste is recycled and not disposed in the SWDS;

(d) LFG4: LFG is partially not generated because part of the organic fraction of the solid waste is treated aerobically and not disposed in the SWDS;

(e) LFG5: LFG is partially not generated because part of the organic fraction of the solid waste is incinerated and not disposed in the SWDS.

21. In addition to the alternative baseline scenarios identified for the destruction of LFG, alternative scenarios for the use of LFG shall also be identified (if this is an aspect of the project activity):

(a) For electricity generation, alternative(s) shall include, inter alia:
 (i) E1: Electricity generation from LFG, undertaken without being registered as CDM project activity;
 (ii) E2: Electricity generation in existing or new renewable or fossil fuel based captive power plant(s);
 (iii) E3: Electricity generation in existing and/or new grid-connected power plants.

(b) For heat generation, alternative(s) shall include, inter alia:
 (i) H1: Heat generation from LFG undertaken without being registered as CDM project activity;
 (ii) H2: Heat generation in existing or new fossil fuel fired cogeneration plant(s);
 (iii) H3: Heat generation in existing or new renewable based cogeneration plant(s);
 (iv) H4: Heat generation in existing or new fossil fuel based boiler(s), air heater(s), glass melting furnace(s) or kiln(s);
 (v) H5: Heat generation in existing or new renewable energy based boiler(s), air heater(s), glass melting furnace(s) or kiln(s);
 (vi) H6: Any other source, such as district heat; and
 (vii) H7: Other heat generation technologies (e.g. heat pumps or solar energy).

(c) For the supply of LFG to a natural gas distribution network, the baseline is assumed to be the supply with natural gas.
5.3.1. Identification of the baseline fuel for electricity generation by captive fossil fuel fired power plants and/or heat generation

22. Project participants shall demonstrate that the identified baseline fuel used for generation of electricity and/or heat is available in abundance in the host country and there is no supply constraint. In case of partial supply constraints (seasonal supply), the project participants shall consider the period of partial supply among potential alternative fuel(s) the one that results in the lowest baseline emissions.

23. Detailed justifications shall be provided and documented in the CDM-PDD for the selected baseline fuel. As a conservative approach, the lowest carbon intensive fuel, such as natural gas, may be used throughout all period of the year.

5.4. Baseline emissions

24. Baseline emissions are determined according to equation 1 and comprise the following sources:

(a) Methane emissions from the SWDS in the absence of the project activity;
(b) Electricity generation using fossil fuels or supplied by the grid in the absence of the project activity;
(c) Heat generation using fossil fuels in the absence of the project activity; and
(d) Natural gas used from the natural gas network in the absence of the project activity.

\[
BE_y = BE_{CH,y} + BE_{EC,y} + BE_{HG,y} + BE_{NG,y}
\]
Equation (1)

Where:

\[
BE_y \quad = \quad \text{Baseline emissions in year } y \quad (t \text{ CO}_2\text{e/yr})
\]
\[
BE_{CH,y} \quad = \quad \text{Baseline emissions of methane from the SWDS in year } y \quad (t \text{ CO}_2\text{e/yr})
\]
\[
BE_{EC,y} \quad = \quad \text{Baseline emissions associated with electricity generation in year } y \quad (t \text{ CO}_2\text{e/yr})
\]
\[
BE_{HG,y} \quad = \quad \text{Baseline emissions associated with heat generation in year } y \quad (t \text{ CO}_2\text{e/yr})
\]
\[
BE_{NG,y} \quad = \quad \text{Baseline emissions associated with natural gas use in year } y \quad (t \text{ CO}_2\text{e/yr})
\]

5.4.1. Step A: Baseline emissions of methane from the SWDS (\(BE_{CH,y}\))

25. Baseline emissions of methane from the SWDS are determined as follows, based on the amount of methane that is captured under the project activity and the amount that would be captured and destroyed in the baseline (such as due to regulations). In addition, the
effect of methane oxidation that is present in the baseline and absent in the project is
taken into account.3

\[BE_{CH4,y} = (1 - OX_{top,layer}) \times (F_{CH4,PJ,y} - F_{CH4,BL,y}) \times GWP_{CH4} \]

Equation (2)

Where:

- \(BE_{CH4,y} \): Baseline emissions of LFG from the SWDS in year \(y \) (t CO\textsubscript{2}e/yr)
- \(OX_{top,layer} \): Fraction of methane in the LFG that would be oxidized in the top layer of the SWDS in the baseline (dimensionless)
- \(F_{CH4,PJ,y} \): Amount of methane in the LFG which is flared and/or used in the project activity in year \(y \) (t CH\textsubscript{4}/yr)
- \(F_{CH4,BL,y} \): Amount of methane in the LFG that would be flared in the baseline in year \(y \) (t CH\textsubscript{4}/yr)
- \(GWP_{CH4} \): Global warming potential of CH\textsubscript{4} (t CO\textsubscript{2}e/t CH\textsubscript{4})

5.4.1.1. Step A.1: Ex post determination of \(F_{CH4,PJ,y} \)

26. During the crediting period, \(F_{CH4,PJ,y} \) is determined as the sum of the quantities of methane flared and used in power plant(s), boiler(s), air heater(s), glass melting furnace(s), kiln(s) and natural gas distribution network, as follows:

\[F_{CH4,PJ,y} = F_{CH4,flared,y} + F_{CH4,EL,Y} + F_{CH4,NG,Y} + F_{CH4,NG,Y} \]

Equation (3)

Where:

- \(F_{CH4,flared,y} \): Amount of methane in the LFG which is flared and/or used in the project activity in year \(y \) (t CH\textsubscript{4}/yr)
- \(F_{CH4,EL,Y} \): Amount of methane in the LFG which is destroyed by flaring in year \(y \) (t CH\textsubscript{4}/yr)
- \(F_{CH4,EL,Y} \): Amount of methane in the LFG which is used for electricity generation in year \(y \) (t CH\textsubscript{4}/yr)
- \(F_{CH4,NG,Y} \): Amount of methane in the LFG which is used for heat generation in year \(y \) (t CH\textsubscript{4}/yr)
- \(F_{CH4,NG,Y} \): Amount of methane in the LFG which is sent to the natural gas distribution network in year \(y \) (t CH\textsubscript{4}/yr)

3 \(OX_{top,layer} \) is the fraction of the methane in the LFG that would oxidize in the top layer of the SWDS in the absence of the project activity. Under the project activity, this effect is reduced as a part of the LFG is captured and does not pass through the top layer of the SWDS. This oxidation effect is also accounted for in the methodological tool “Emissions from solid waste disposal sites”. In addition to this effect, the installation of a LFG capture system under the project activity may result in the suction of additional air into the SWDS. In some cases, such as with a high suction pressure, the air may decrease the amount of methane that is generated under the project activity. However, in most circumstances where the LFG is captured and used this effect was considered to be very small, as the operators of the SWDS have in most cases an incentive to maintain a high methane concentration in the LFG. For this reason, this effect is neglected as a conservative assumption.
27. $F_{CH4,EL,y}$, $F_{CH4,HG,y}$ and $F_{CH4,NG,y}$ are determined using the “Tool to determine the mass flow of a greenhouse gas in a gaseous stream” and monitoring the working hours of the power plant(s), boiler(s), air heater(s), glass melting furnace(s) and kiln(s), so that no emission reduction are claimed for methane destruction during non-working hours. This is taken into account by monitoring the hours that the equipment utilizing the LFG is operating in year y ($Op_{j,h,y}$).

28. The following requirements apply:

(a) The gaseous stream the tool shall be applied to the LFG delivery pipeline to each item of electricity generation or heat generation equipment j, or the natural gas distribution system. $F_{CH4,EL,y}$ and $F_{CH4,HG,y}$ are then calculated as the sum of mass flows to each item of electricity generation or heat generation equipment j;

(b) CH_4 is the greenhouse gases for which the mass flow should be determined;

(c) The simplification offered for calculating the molecular mass of the gaseous stream is valid (equations 3 or 17 in the tool);

(d) The mass flow should be calculated on an hourly basis for each hour h in year y;

(e) The mass flow calculated for hour h is 0 if the equipment is not working in hour h ($Op_{j,h,y}=$not working), the hourly values are then summed to a yearly unit basis.

5.5. **Amount of methane destroyed by flaring ($F_{CH4,flared,y}$)**

29. $F_{CH4,flared,y}$ is determined as the difference between the amount of methane supplied to the flare(s) and any methane emissions from the flare(s), as follows:

$$F_{CH4,flared,y} = F_{CH4,sent_flare,y} - \frac{PE_{flare,y}}{GWP_{CH4}} \quad \text{Equation (4)}$$

Where:

- $F_{CH4,flared,y}$ = Amount of methane in the LFG which is destroyed by flaring in year y (t CH$_4$/yr)
- $F_{CH4,sent_flare,y}$ = Amount of methane in the LFG which is sent to the flare in year y (t CH$_4$/yr)
- $PE_{flare,y}$ = Project emissions from flaring of the residual gas stream in year y (t CO$_2$e/yr)
- GWP_{CH4} = Global warming potential of CH$_4$ (t CO$_2$e/t CH$_4$)

30. $F_{CH4,sent_flare,y}$ is determined directly using the “Tool to determine the mass flow of a greenhouse gas in a gaseous stream”, applying the requirements described above where the gaseous stream the tool shall be applied to is the LFG delivery pipeline to the flare(s).

31. $PE_{flare,y}$ shall be determined using the methodological tool “Tool to determine project emissions from flaring gases containing methane” Project emissions from flaring”. If LFG is flared through more than one flare, then $PE_{flare,y}$ is the sum of the emissions for each flare determined separately.
5.5.1.1.1. Step A.1.1: Ex ante estimation of $F_{CH4,PJ,y}$

32. An ex ante estimate of $F_{CH4,PJ,y}$ is required to estimate baseline emission of methane from the SWDS (according to equation 2) in order to estimate the emission reductions of the proposed project activity in the CDM PDD. It is determined as follows:

\[F_{CH4,PJ,y} = \eta_{PJ} \times BE_{CH4,SWDS,y}/GWP_{CH4} \]

Equation (5)

Where:
- $F_{CH4,PJ,y}$ = Amount of methane in the LFG which is flared and/or used in the project activity in year y (t CH$_4$/yr)
- $BE_{CH4,SWDS,y}$ = Amount of methane in the LFG that is generated from the SWDS in the baseline scenario in year y (t CO$_2$e/yr)
- η_{PJ} = Efficiency of the LFG capture system that will be installed in the project activity
- GWP_{CH4} = Global warming potential of CH$_4$ (t CO$_2$e/t CH$_4$)

33. $BE_{CH4,SWDS,y}$ is determined using the methodological tool “Emissions from solid waste disposal sites”. The following guidance should be taken into account when applying the tool:

(a) f_y in the tool shall be assigned a value of 0 because the amount of LFG that would have been captured and destroyed is already accounted for in equation 2 of this methodology;
(b) In the tool, x begins with the year that the SWDS started receiving wastes (e.g. the first year of SWDS operation); and
(c) Sampling to determine the fractions of different waste types is not necessary because the waste composition can be obtained from previous studies.

5.5.1.2. Step A.2: Determination of $F_{CH4,BL,y}$

34. This step provides a procedure to determine the amount of methane that would have been captured and destroyed (by flaring) in the baseline due to regulatory or contractual requirements, or to address safety and odour concerns (collectively referred to as requirement in this step). The four cases in Table 23 are distinguished. The appropriate case should be identified and the corresponding instructions followed.

Table 3. Cases for determining methane captured and destroyed in the baseline

<table>
<thead>
<tr>
<th>Situation at the start of the project activity</th>
<th>Requirement to destroy methane</th>
<th>Existing LFG capture and destruction system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Case 2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Case 3</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Case 4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
5.5.1.2.1. Case 1: No requirement to destroy methane exists and no existing LFG capture system

35. In this situation:

\[F_{CH4,BL,R,Y} = 0 \]
Equation (6)

5.5.1.2.2. Case 2: Requirement to destroy methane exists and no existing LFG capture system

36. In this situation:

\[F_{CH4,BL,R,Y} = F_{CH4,BL,R,Y} \]
Equation (7)

37. \(F_{CH4,BL,R,Y} \) should be determined based on the information contained in the requirement to destroy methane, as follows:

(a) If the requirement specifies the amount of methane that must be flared then that amount is \(F_{CH4,BL,R,Y} \);

(b) If the requirement specifies a percentage of the LFG that is required to be flared, the amount shall be calculated as follows:

\[F_{CH4,BL,R,Y} = \rho_{reg,Y} \times F_{CH4,PJ,capt,Y} \]
Equation (8)

Where:

\(F_{CH4,BL,R,Y} \) = Amount of methane in the LFG which is flared in the baseline due to a requirement in year \(Y \) (\(t \text{CH}_4/\text{yr} \))

\(\rho_{reg,Y} \) = Fraction of LFG that is required to be flared due to a requirement in year \(Y \)

\(F_{CH4,PJ,capt,Y} \) = Amount of methane in the LFG which is captured in the project activity in year \(Y \) (\(t \text{CH}_4/\text{yr} \))

38. Project participants may choose to calculate \(F_{CH4,PJ,capt,Y} \) by either of the two options:

39. **Option 1**: Calculate using the “Tool to determine the mass flow of a greenhouse gas in a gaseous stream”, applying the following requirements:

(a) The gaseous stream the tool shall be applied to is the LFG pipeline immediately downstream of the LFG capture system and before any split in the gaseous flow to different uses or flares;

(b) \(\text{CH}_4 \) is the greenhouse gases for which the mass flow should be determined;

(c) The simplification offered for calculating the molecular mass of the gaseous stream is valid (equations 3 or 17 in the tool); and

(d) The mass flow should be calculated on an hourly basis for each hour \(h \) in year \(Y \).
40. **Option 2**: Calculate as the sum of the amount of methane that is sent to the flare, electricity generating or heat generating equipment in year y as measured in Step A.1, however not taking into account the working hours of the equipment.

(a) If the requirement does not specify the amount or percentage of LFG that should be destroyed but requires the installation of a capture system, without requiring the captured LFG to be flared then:

$$F_{\text{CH}_4,\text{BL},R,Y} = 0$$

Equation (9)

(b) If the requirement does not specify any amount or percentage of LFG that should be destroyed but requires the installation of a system to capture and flare the LFG, then a typical destruction rate of 20 per cent is assumed:

$$F_{\text{CH}_4,\text{BL},R,Y} = 0.2 \times F_{\text{CH}_4,\text{P}J,\text{capt},Y}$$

Equation (10)

5.5.1.2.3. Case 3: No requirement to destroy methane exists and a LFG capture system exists

41. In this situation:

$$F_{\text{CH}_4,\text{BL},Y} = F_{\text{CH}_4,\text{BL},\text{sys},Y}$$

Equation (11)

(a) If the amount of methane captured with the existing system can be monitored separately from the amount captured under the project, and the efficiency of the existing system is not impacted on by the project system during the crediting period(s), then $F_{\text{CH}_4,\text{BL},\text{sys},Y}$ is determined as follows:

$$F_{\text{CH}_4,\text{BL},\text{sys},Y} = F_{\text{CH}_4,\text{sent,flare},Y}$$

Equation (12)

Where:

- $F_{\text{CH}_4,\text{BL},\text{sys},Y}$ = Amount of methane in the LFG that would be flared in the baseline in year y for the case of an existing LFG capture system (t CH$_4$/yr)
- $F_{\text{CH}_4,\text{sent,flare},Y}$ = Amount of methane in the LFG which is sent to the flare in year y (t CH$_4$/yr)

42. $F_{\text{CH}_4,\text{sent,flare},Y}$ is determined using the “Tool to determine the mass flow of a greenhouse gas in a gaseous stream” and applying the requirements described in Step A.1, where

4 This default value of 20 per cent is based on assuming a situation in which: the efficiency of the LFG capture system in the project is 50 per cent; the efficiency of the LFG capture system in the baseline is 20 per cent; and, the amount captured in the baseline is flared using an open flare with a destruction efficiency of 50 per cent (consistent with the default value provided in the tool “Project emissions from flaring” “Tool to determine project emissions from flaring gases containing methane”). Project participants may propose and justify an alternative default value as a request for revision to this methodology.
the gaseous stream the tool shall be applied to is the pipeline collecting LFG from the existing LFG capture system.

(b) If there is no monitored data available, but there is historic data on the amount of methane that was captured in the year prior to the implementation of the project activity, then in this situation:

\[F_{CH4.BL.sys,y} = F_{CH4.hist.y} \] \hspace{1cm} \text{Equation (13)}

43. In determining \(F_{CH4.hist.y} \) it is assumed that the fraction of LFG that was recovered in the year prior to the implementation of the project activity will be the same fraction recovered under the project activity:

\[F_{CH4.hist.y} = \frac{F_{CH4.BL,x-1}}{F_{CH4,x-1}} \times F_{CH4,PJ,y} \] \hspace{1cm} \text{Equation (14)}

Where:

- \(F_{CH4.hist.y} \) = Historical amount of methane in the LFG which is captured and destroyed (t CH\(_4\)/yr)
- \(F_{CH4.BL,x-1} \) = Historical amount of methane in the LFG which is captured and destroyed in the year prior to the implementation of the project activity (t CH\(_4\)/yr)
- \(F_{CH4,x-1} \) = Amount of methane in the LFG generated in the SWDS in the year prior to the implementation of the project activity (t CH\(_4\)/yr)
- \(F_{CH4,PJ,capt,y} \) = Amount of methane in the LFG which is captured in the project activity in year \(y \) (t CH\(_4\)/yr)

44. \(F_{CH4,x-1} \) shall be estimated using the methodological tool “Emissions from solid waste disposal sites”. The guidance and requirements described in Step A.1.1 for applying the tool shall be followed. The year \(y \) in the tool is equivalent to the year prior to the implementation of the project activity.

(c) If there is no monitored or historic data on the amount of methane that was captured in the year prior to the implementation of the project situation, then:

\[F_{CH4.BL.sys,y} = 0.2 \times F_{CH4,PJ,y} \] \hspace{1cm} \text{Equation (15)}

45. The 20 per cent default factor is consistent with the default factor given in equation 10.

5.5.1.3. Case 4: Requirement to destroy methane exists and LFG capture system exists

46. \(F_{CH4.BL,y} \) shall be determined based on information in contract of regulation requirements and data related to the existing LFG capture system, as follows:
$F_{\text{CH}_4,\text{BL},y} = \max\{F_{\text{CH}_4,\text{BL},R,y}; F_{\text{CH}_4,\text{BL},\text{sys},y}\}$ \hspace{1cm} \text{Equation (16)}$

Where:

$F_{\text{CH}_4,\text{BL},R,y}$ = Amount of methane in the LFG which is flared in the baseline due to a requirement in year y (t CH$_4$/yr)

$F_{\text{CH}_4,\text{BL},\text{sys},y}$ = Amount of methane in the LFG that would be flared in the baseline in year y for the case of an existing LFG capture system (t CH$_4$/yr)

47. $F_{\text{CH}_4,\text{BL},R,y}$ and $F_{\text{CH}_4,\text{BL},\text{sys},y}$ shall be determined according to the respective procedures for Case 2 and Case 3 above.

5.5.2. Step B: Baseline emissions associated with electricity generation ($BE_{\text{EC},y}$)

48. The baseline emissions associated with electricity generation in year y ($BE_{\text{EC},y}$) shall be calculated using the "Tool to calculate baseline, project and/or leakage emissions from electricity consumption". When applying the tool:

(a) The electricity sources k in the tool correspond to the sources of electricity generated identified in the selection of the most plausible baseline scenario; and

(b) $EC_{\text{BL},k,y}$ in the tool is equivalent to the net amount of electricity generated using LFG in year y ($EG_{\text{PJ},y}$).

5.5.3. Step C: Baseline emissions associated with heat generation ($BE_{\text{HG},y}$)

49. The baseline emissions associated with heat generation in year y ($BE_{\text{HG},y}$) are determined based on the amount of methane in the LFG which is sent to the heat generation equipment in the project activity (boiler, air heater, glass melting furnace(s) and/or kiln), as follows:

$$BE_{\text{HG},y} = NCV_{\text{CH}_4} \times \sum_{j=1}^{n} \left(R_{\text{efficiency},j,y} \times F_{\text{CH}_4,\text{HG,dest},j,y} \times EF_{\text{CO}_2,\text{BL,HG},j} \right)$$ \hspace{1cm} \text{Equation (17)}$

Where:

$BE_{\text{HG},y}$ = Baseline emissions associated with heat generation in year y (t CO$_2$/yr)

NCV_{CH_4} = Net calorific value of methane at reference conditions (TJ/t CH$_4$)

$R_{\text{efficiency},j,y}$ = Ratio of the project and baseline efficiency of heat equipment type j in year y

$F_{\text{CH}_4,\text{HG,dest},j,y}$ = Amount of methane in the LFG which is destroyed for heat generation by equipment type j in year y (t CH$_4$/yr)

$EF_{\text{CO}_2,\text{BL,HG},j}$ = CO$_2$ emission factor of the fossil fuel type used for heat generation by equipment type j in the baseline (t CO$_2$/TJ)
\[j \] = Heat generation equipment (boiler, air heater, glass melting furnace(s) or kiln)

\[n \] = Number of different heat generation equipment used in the project activity

5.5.3.1. **Step C.1: Determination of \(R_{\text{efficiency},j,y} \)**

50. The ratio of the project and baseline efficiency of an air heater, boiler, glass melting furnace or kiln is determined as follows:

\[
R_{\text{efficiency},j,y} = \min \left\{ 1; \frac{\eta_{\text{HG,P},j,y}}{\eta_{\text{HG,BL},j}} \right\}
\]

Equation (18)

Where:

\[R_{\text{efficiency},j,y} \] = Ratio of the project and baseline efficiency of equipment type \(j \) in year \(y \)

\[\eta_{\text{HG,BL},j} \] = Efficiency of the heat generation equipment type \(j \) used in the baseline

\[\eta_{\text{HG,P},j,y} \] = Efficiency of the heat generation equipment type \(j \) used in the project activity in year \(y \)

\[j \] = Heat generation equipment type (boiler, air heater, glass melting furnace(s) or kiln)

51. To estimate the baseline energy efficiency of an air heater, boiler, glass melting furnace(s) or kiln \((\eta_{\text{HG,BL},j}) \) project participants shall apply the “Tool to determine the baseline efficiency of thermal or electric energy generation systems”.

5.5.3.2. **Step C.2: Determination of \(F_{\text{CH}_4,\text{HG,dest},j,y} \)**

52. The amount of methane that is destroyed in the LFG that is sent to heat generation equipment \(j \) is determined with equation 19 if \(j \) is a boiler or air heater, or glass melting furnace, or with equation 20 if \(j \) is a brick kiln. For the particular case of intermittent brick kilns, project participants may choose to apply either equation 19 or 20.

\[
F_{\text{CH}_4,\text{HG,dest},j,y} = f_{d_{\text{CH}_4,\text{HG,j,default}}} \times F_{\text{CH}_4,\text{HG},j,y}
\]

Equation (19)

Where:

\[F_{\text{CH}_4,\text{HG,dest},j,y} \] = Amount of methane in the LFG which is destroyed for heat generation by equipment type \(j \) in year \(y \) (t CH\(_4\)/yr)

\[f_{d_{\text{CH}_4,\text{HG,j,default}}} \] = Default value for the fraction of methane destroyed when used for heat generation equipment type \(j \)

\[F_{\text{CH}_4,\text{HG},j,y} \] = Amount of methane in the LFG which is used for heat generation equipment type \(j \) in year \(y \) (t CH\(_4\)/yr)

53. \(F_{\text{CH}_4,\text{HG},j,y} \) is determined according to Step A.1, where \(j \) is each item of heat generation equipment.

21 of 35
54. With: \(f d_{CH4, kiln, h} = 1 \) if \(Q_{O2, kiln, h} > 0 \), and otherwise \(f d_{CH4, kiln, h} = 0 \).

\[
F_{CH4,HG,dest,j,y} = \sum_{h=1}^{8760} (f d_{CH4, kiln, h} \times F_{CH4,HG, kiln, h})
\]

Where:
- \(F_{CH4,HG,dest,j,y} \) = Amount of methane in the LFG which is destroyed for heat generation by brick kiln in year \(y \) (t CH\(_4\)/yr)
- \(f d_{CH4, kiln, h} \) = Fraction of methane destroyed when used for heat generation in a brick kiln in hour \(h \)
- \(F_{CH4,HG, kiln, h} \) = Amount of methane in the LFG which is used for heat generation by brick kiln in hour \(h \) (t CH\(_4\)/hr)
- \(Q_{O2, kiln, h} \) = Average volumetric fraction of oxygen in the exhaust gas flow of the kiln in hour \(h \) (volume of O\(_2\)/volume of the gas stream)
- \(h \) = Hours in year \(y \)

55. \(F_{CH4,HG, kiln, h} \) is determined using the “Tool to determine the mass flow of a greenhouse gas in a gaseous stream”, following the requirements given in Step A.1 for \(j = \text{kiln} \), except that the mass flow should be summed to an hourly (not yearly) unit basis (t CH\(_4\)/hr).

5.5.3.3. **Step D: Baseline emissions associated with natural gas use (\(BE_{NG,y} \))**

56. \(BE_{NG,y} \) is estimated as follows:

\[
BE_{NG,y} = 0.0504 \times F_{CH4,NG,y} \times EF_{CO2,NG,y}
\]

Where:
- \(BE_{NG,y} \) = Baseline emissions associated with natural gas use in year \(y \) (t CO\(_2\)/e/yr)
- \(EF_{CO2,NG,y} \) = Average CO\(_2\) emission factor of natural gas in the natural gas network in year \(y \) (t CO\(_2\)/e/TJ)
- \(F_{CH4,NG,y} \) = Amount of methane in the LFG which is sent to the natural gas distribution network in year \(y \) (t CH\(_4\)/yr)

57. \(EF_{CO2,NG,y} \) is determined using the “Tool to calculate project or leakage CO\(_2\) emissions from fossil fuel combustion”.

5.6. **Project emissions**

58. Project emissions are calculated as follows:

\[
PE_y = PE_{EC,y} + PE_{FC,y}
\]

Equation (22)

Where:

- \(PE_y\) = Project emissions in year \(y\) (t CO\(_2\)/yr)
- \(PE_{EC,y}\) = Emissions from consumption of electricity due to the project activity in year \(y\) (t CO\(_2\)/yr)
- \(PE_{FC,y}\) = Emissions from consumption of fossil fuels due to the project activity, for purpose other than electricity generation, in year \(y\) (t CO\(_2\)/yr)

59. The project emissions from consumption of electricity by the project activity \((PE_{EC,y})\) shall be calculated using the “Tool to calculate baseline, project and/or leakage emissions from electricity consumption”. When applying the tool:

(a) \(EC_{PJ,k,y}\) in the tool is equivalent to the amount of electricity consumed by the project activity in year \(y\) \((EC_{PJ,y})\); and

(b) If in the baseline a proportion of LFG is destroyed \((F_{CH4,BL,y} > 0)\), then the electricity consumption in the tool \((EC_{PJ,y})\) should refer to the net quantity of electricity consumption (i.e. the increase due to the project activity). The determination of the amount of electricity consumed in the baseline shall be transparently documented in the CDM-PDD.

60. The project emissions from fossil fuel combustion for purposes other than electricity generation \((PE_{FC,y})\) shall be calculated using the “Tool to calculate project or leakage CO\(_2\) emissions from fossil fuel combustion”. When applying the tool:

(a) Processes \(j\) in the tool correspond to the sources of fossil fuel consumption due to the project activity other than for electricity generation or and any on-site transportation by trucks or cars;

(b) If in the baseline a proportion of LFG is captured and flared \((F_{CH4,BL,y} > 0)\), then the fossil fuels consumption used in calculation \((FC_{PJ,y})\) should refer to the net of that consumed in the baseline. The determination of the amount of fossil fuels consumed in the baseline shall be transparently documented in the CDM-PDD.

5.7. **Leakage**

61. No leakage effects are accounted for under this methodology.

5.8. **Emission reductions**

62. Emission reductions are calculated as follows:

\[
ER_y = BE_y - PE_y
\]

Equation (23)
Where:

\[ER_y = \text{Emission reductions in year } y \ (t \text{ CO}_2\text{e/yr}) \]

\[BE_y = \text{Baseline emissions in year } y \ (t \text{ CO}_2\text{e/yr}) \]

\[PE_y = \text{Project emissions in year } y \ (t \text{ CO}_2\text{e/yr}) \]

63. Project participants should provide an ex ante estimate of emissions reductions in the CDM-PDD. This requires projecting the future GHG emissions of the SWDS for the calculation of baseline emissions.

64. If the energy component is intended to be implemented after the first year of the project activity, then project participants may exclude the energy component from the ex ante estimation of baseline emissions. This avoids overestimating ex ante estimate of emissions if energy generation is not implemented, or a lower capacity is implemented than originally envisaged. This exclusion is not applicable to the determination of the baseline or demonstration of additionality.

5.9. **Project activity under a programme of activities**

65. In addition to the requirements set out in the latest approved version of the “Standard for demonstration of additionality, development of eligibility criteria and application of multiple methodologies for programme of activities”, the following shall be applied for the use of this methodology in a project activity under a programme of activities (PoAs).

66. The PoA may consist of one or several types of CPAs. CPAs are regarded to be of the same type if they are similar with regard to the demonstration of additionality, emission reduction calculations and monitoring. The CME shall describe in the CDM-PoA-DD for each type of CPAs separately:

 (a) Eligibility criteria for CPA inclusion used for each type of CPAs. In case of combinations of the types of use of the captured landfill gas in one CPA, the eligibility criteria shall be defined for each type of use of the LFG separately;

 (b) Emission reduction calculations for each type of CPAs;

 (c) Monitoring provisions for each type of CPAs.

67. The CME shall describe transparently and justify in the CDM-PoA-DD which CPAs are regarded to be of the same type. CPAs shall not be regarded to be of the same type if one of the following conditions is different:

 (a) The baseline scenario with regard to any of the following aspects:

 (i) Partial release of the LFG from the SWDS;

 (ii) Total release of the LFG from the SWDS;

 (iii) In case of electricity generation in the project activity:

 a. The grid;

 b. Captive fossil fuel fired power plants;

 (b) In case of heat generation, fossil fuel fired on-site equipment;
The project activity with regard to any of the following aspects of the use of the captured landfill gas:

(i) Flaring;
(ii) Flaring; and
 a. Electricity generation;
 b. Heat generation;
 i. Boiler;
 ii. Air heater;
 iii. Kiln;
 iv. Glass melting furnace;
 c. Supplying the LFG to consumers through a natural gas distribution network;

(iii) Combinations of types of use of the landfill gas;

(d) The legal and regulatory framework.

68. When defining eligibility criteria for CPA inclusion for a distinct type of CPAs, the CME shall consider relevant technical and economic parameters, such as:

(a) Ranges of certain design specifications (ranges of sizes of landfill and amounts of waste disposed);

(b) Ranges of efficiency of the landfill gas capture system;

(c) Type of solid waste disposal site:
 (i) New solid waste disposal site;
 (ii) Existing solid waste disposal site;

(d) Ranges of costs (capital investment, operating and maintenance costs, etc.);

(e) Ranges of revenues (income from electricity, heat or LFG sale, subsidies/fiscal incentives, ODA).

69. The eligibility criteria related to the costs and revenues parameters shall be updated every 2 years in order to correctly reflect the technical and market circumstances of a CPA implementation.

70. In case the PoA contains several types of CPAs, the actual CPA-DD submitted for the purpose of registration of the PoA shall contain all information required as per the latest approved version of the “Guidelines for completing the component project activity design document form” for each type of actual CPA, to be validated by a DOE and submitted for the registration to the Board.
5.10. **Data and parameters not monitored**

71. In addition to the parameters listed in the tables below, the provisions on data and parameters not monitored in the tools referred to in this methodology apply.

Data / Parameter table 1.

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>(O_{\text{top layer}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>Description:</td>
<td>Fraction of methane that would be oxidized in the top layer of the SWDS in the baseline</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Consistent with how oxidation is accounted for in the methodological tool “Emissions from solid waste disposal sites”</td>
</tr>
<tr>
<td>Value to be applied:</td>
<td>0.1</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>-</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>Applicable to Step A</td>
</tr>
</tbody>
</table>

Data / Parameter table 2.

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>(F_{\text{CH}_4,BL,x-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t CH(_4)/yr</td>
</tr>
<tr>
<td>Description:</td>
<td>Historical amount of methane in the LFG which is captured and destroyed in the year prior to the implementation of the project activity</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Information recorded by the SWDS operator</td>
</tr>
<tr>
<td>Value to be applied:</td>
<td>-</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>-</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>Applicable to Case 3 of Step A.2</td>
</tr>
</tbody>
</table>

Data / Parameter table 3.

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>(G_{\text{WP,CH}_4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t CO(_2)/t CH(_4)</td>
</tr>
<tr>
<td>Description:</td>
<td>Global warming potential of CH(_4)</td>
</tr>
<tr>
<td>Source of data:</td>
<td>IPCC</td>
</tr>
<tr>
<td>Value to be applied:</td>
<td>21 for the first commitment period. Shall be updated according to any future COP/MOP decisions</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>-</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>-</td>
</tr>
</tbody>
</table>

Data / Parameter table 4.

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>(NC_{\text{CH}_4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>TJ/t CH(_4)</td>
</tr>
<tr>
<td>Description:</td>
<td>Net calorific value of methane at reference conditions</td>
</tr>
</tbody>
</table>
Data / Parameter table 5.

<table>
<thead>
<tr>
<th>Data / Parameter</th>
<th>Description</th>
<th>Source of data</th>
<th>Value to be applied</th>
<th>Monitoring frequency</th>
<th>QA/QC procedures</th>
<th>Any comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{EF}_{\text{CO}_2,\text{BL,HG,j}}$</td>
<td>CO₂ emission factor of the fossil fuel type used for heat generation by equipment type j in the baseline</td>
<td>Table 1.4 of Chapter 1 of Vol. 2 (Energy) of the 2006 IPCC Guidelines on National GHG Inventories</td>
<td>The lower limit of the 95% confidence interval of the default values provided in Table 1.4 of reference above shall be used</td>
<td>-</td>
<td>-</td>
<td>Applicable to Step C</td>
</tr>
</tbody>
</table>

Data / Parameter table 6.

<table>
<thead>
<tr>
<th>Data / Parameter</th>
<th>Description</th>
<th>Source of data</th>
<th>Value to be applied</th>
<th>Monitoring frequency</th>
<th>QA/QC procedures</th>
<th>Any comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{PJ}</td>
<td>Efficiency of the LFG capture system that will be installed in the project activity</td>
<td>-</td>
<td>Technical specifications of the LFG capture system to be installed (if available) or a default value of 50%</td>
<td>-</td>
<td>-</td>
<td>Applicable to Step A.1.1</td>
</tr>
</tbody>
</table>

Data / Parameter table 7.

<table>
<thead>
<tr>
<th>Data / Parameter</th>
<th>Description</th>
<th>Source of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{fd}_{\text{CH}_4,\text{HG,j, default}}$</td>
<td>Default value for the fraction of methane destroyed when used for heat generation equipment type j</td>
<td>The values for boilers and air heaters are based on default values provided in the 2006 IPCC Guidelines (Tier 3 approach for Chapter 2: Stationary Combustion of Volume 2: Energy Use). The value for intermittent brick kilns is based on the assumption that combustion temperatures in the kiln will exceed 600 °C and that the time of exposure is sufficiently long to support 90% combustion</td>
</tr>
</tbody>
</table>
Measurement procedures (if any): Select the appropriate factor for the fraction of methane destroyed from the following table:

<table>
<thead>
<tr>
<th>Equipment type</th>
<th>Fraction of CH\textsubscript{4} destroyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers</td>
<td>1</td>
</tr>
<tr>
<td>Air heaters</td>
<td>1</td>
</tr>
<tr>
<td>Glass melting furnaces</td>
<td>1</td>
</tr>
<tr>
<td>Intermittent brick kiln</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Monitoring frequency: -

QA/QC procedures: -

Any comment: Applicable to calculating $F_{\text{CH}_4,\text{HG},\text{dest},j,y}$ using equation 19 in Step C.2. For intermittent brick kilns, project participants may choose to instead determine $F_{\text{CH}_4,\text{HG},\text{dest},j,y}$ using equation 20.

6. Monitoring methodology

6.1. Data and parameters monitored

72. In addition to the parameters listed in the tables below, the provisions on data and parameters not monitored in the tools referred to in this methodology apply.

Data / Parameter table 8.

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>Management of SWDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>-</td>
</tr>
<tr>
<td>Description:</td>
<td>Management of SWDS</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Use different sources of data: (a) Original design of the landfill; (b) Technical specifications for the management of the SWDS; (c) Local or national regulations</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Project participants should refer to the original design of the landfill to ensure that any practice to increase methane generation have been occurring prior to the implementation of the project activity. Any change in the management of the SWDS after the implementation of the project activity should be justified by referring to technical or regulatory specifications</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Annually</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>-</td>
</tr>
</tbody>
</table>

Data / Parameter table 9.

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>$F_{\text{CH}_4,\text{BL},R,y}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t CH\textsubscript{4}/yr</td>
</tr>
<tr>
<td>Description:</td>
<td>Amount of methane in the LFG which is flared due to a requirement in year y</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Information of the host country's regulatory requirements relating to LFG, contractual requirements, or requirements to address safety and odour concerns</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>-</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Annually</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>Applicable to Case 2 of Step A.2</td>
</tr>
</tbody>
</table>

Data / Parameter table 10.

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>$\rho_{\text{reg},y}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>Description:</td>
<td>Fraction of LFG that is required to be flared due to a requirement in year y</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Information of the host country's regulatory requirements relating to LFG, contractual requirements, or requirements to address safety and odour concerns</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>-</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Annually</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>Applicable to Case 2 of Step A.2</td>
</tr>
</tbody>
</table>

Data / Parameter table 11.

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>$\eta_{\text{HG},PJ,y}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>Dimensionless</td>
</tr>
<tr>
<td>Description:</td>
<td>Efficiency of the heat generation equipment used in the project activity in year y</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Use one of the following options to determine the efficiency: (a) Measured efficiency during monitoring; (b) Manufacturer's information on the efficiency; or (c) Use a default value of 60%</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>If measurements are conducted, use recognized standards for the measurement of the heat generator efficiency, such as the “British Standard Methods for Assessing the thermal performance of boilers for steam, hot water and high temperature heat transfer fluids” (BS845). Where possible, use preferably the direct method (dividing the net heat generation by the energy content of the fuels fired during a representive time period), as it is better able to reflect average efficiencies during a representative time period compared to the indirect method (determination of fuel supply or heat generation and estimation of the losses). Document measurement procedures and results and manufacturer’s information transparently in the CDM-PDD</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Annually</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>Applicable to Step C.1</td>
</tr>
</tbody>
</table>
Data / Parameter table 12.

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>(\text{Op}_{j,h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>-</td>
</tr>
<tr>
<td>Description:</td>
<td>Operation of the equipment that consumes the LFG</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Project participants</td>
</tr>
</tbody>
</table>
| Measurement procedures (if any): | For each equipment unit \(j \) using the LFG monitor that the plant is operating in hour \(h \) by the monitoring any one or more of the following three parameters:
(a) Temperature. Determine the location for temperature measurements and minimum operational temperature based on manufacturer’s specifications of the burning equipment. Document and justify the location and minimum threshold in the PDD;
(b) Flame. Flame detection system is used to ensure that the equipment is in operation;
(c) Products generated. Monitor the generation of steam for the case of boilers and air-heaters and glass for the case of glass melting furnaces. This option is not applicable to brick kilns.
\(\text{Op}_{j,h} = 0 \) when:
(a) One of more temperature measurements are missing or below the minimum threshold in hour \(h \) (instantaneous measurements are made at least every minute);
(b) Flame is not detected continuously in hour \(h \) (instantaneous measurements are made at least every minute);
(c) No products are generated in the hour \(h \).
Otherwise, \(\text{Op}_{j,h} = 1 \) |
| Monitoring frequency: | Hourly |
| QA/QC procedures: | - |
| Any comment: | - |

Data / Parameter table 13.

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>(\text{EG}_{PJ,y})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>MWh</td>
</tr>
<tr>
<td>Description:</td>
<td>Amount of electricity generated using LFG by the project activity in year (y)</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Electricity meter</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Monitor net electricity generation by the project activity using LFG</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Continuous</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>Electricity meter will be subject to regular (in accordance with stipulation of the meter supplier) maintenance and testing to ensure accuracy. The readings will be double checked by the electricity distribution company</td>
</tr>
<tr>
<td>Any comment:</td>
<td>This parameter is required for calculating baseline emissions associated with electricity generation (\text{BE}_{EC,y}) using the “Tool to calculate baseline, project and/or leakage emissions from electricity consumption”</td>
</tr>
</tbody>
</table>
Data / Parameter table 14.

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>$\text{EG}_{\text{EC},y}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>MWh</td>
</tr>
<tr>
<td>Description:</td>
<td>Amount of electricity consumed by the project activity in year y</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Electricity meter</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Sources of consumption shall include, where applicable, electricity consumed for the operation of the LFG capture system, for any processing and upgrading of the LFG, for transportation of the LFG to the flare or other applications (boilers, power generators), for the compression of the LFG into the natural gas network, etc.</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Continuous</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>Electricity meter will be subject to regular (in accordance with stipulation of the meter supplier) maintenance and testing to ensure accuracy. The readings will be double checked by the electricity distribution company</td>
</tr>
<tr>
<td>Any comment:</td>
<td>This parameter is required for calculating project emissions from electricity consumption due to an alternative waste treatment process t ($P_{\text{EC},y}$) using the “Tool to calculate baseline, project and/or leakage emissions from electricity consumption”</td>
</tr>
</tbody>
</table>
Document information

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| Draft 14.0 | 9 May 2013 | MP 59, Annex 7
A call for public input will be issued on this draft revised methodology.
The revision removes requirements for specific case CPA-DDs and frequency of updating of eligibility criteria as these requirements are specified in the relevant standards. |
| 13.0.0 | 11 May 2012 | EB 67, Annex 12
Revision to:
- Broaden the applicability by allowing the use of landfill gas in glass melting furnaces;
- Provide more clarity on how to monitor possible changes in the management of the landfill;
- Introduce provisions for the use of this methodology in a project activity under a PoA. |
| 12.0.0 | 25 November 2011 | EB 65, Annex 13
Revision to:
- Clarify that the methodology is applicable to new and existing SWDS;
- Broaden the applicability by allowing the use of landfill gas in brick kilns, by allowing the claim of certified emission reductions associated with fossil fuel displaced by landfill gas fed into a natural gas network and allowing that the use but not the amount of LFG changes between the baseline and project;
- Revise the applicability conditions, requiring that:
 (a) If an existing active landfill gas capture system was in place prior to the implementation of the project activity, then historical or monitored information on the amount of landfill gas captured is required; and
 (b) The implementation of the project activity does not reduce the amount of organic waste that would be recycled in the absence of the project activity;
- Incorporate the effect of methane oxidation in the top layer of the solid waste disposal site in the baseline scenario;
- Refer to relevant tools;
- Change the title from "Consolidated baseline and monitoring methodology for landfill gas project activities" to "Flaring or use of landfill gas". |
<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| 11 | 28 May 2009 | EB 47, Annex 6
Revision to:
Allow only the option of continuous measurement of methane content of the LFG;
Include definition of continuous monitoring system. |
| 10 | 13 February 2009 | EB 45, Annex 9
Revision to:
- Include guidance for air heater efficiency;
- Include a clarification that emission reductions can be claimed for generation of thermal energy provided that the LFG displaces use of fossil fuel either in a boiler or in an air heater. |
| 09.1 | 24 October 2008 | EB 43, Annex 2
Editorial changes to reflect that the source of data for the "Regulatory requirements relating to LFG" has been changed. Publicly available information should be used instead of contacting the DNA for collecting the information. |
| 09 | 02 August 2008 | EB 41, Annex 4
Following clarifications have been added:
- The measurement of both LFG flow and methane fraction in LFG have to be conducted on the same basis (wet or dry);
- Inclusion of cases where periodical measurements are allowed and guidance on performing periodical measurements for monitoring the fraction of methane in the LFG;
- The title of the “Tool to determine methane emissions avoided from dumping waste at a solid waste disposal site” changes to “Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site”. |
| 08.1 | 16 May 2008 | EB 39, Paragraph 22
“Tool to calculate baseline, project and/or leakage emissions from electricity consumption” replaces the withdrawn “Tool to calculate project emissions from electricity consumption”. |
| 08 | 30 November 2007 | EB 36, Annex 10
Clarify the procedure to calculate the Adjustment Factor, where in the baseline the LFG was captured and destroyed/used;
Clarify how to apply the “Tool to determine methane emissions avoided from the dumping waste at a solid waste disposal site” and “Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site” instead of contacting the DNA for collecting the information. |
Version Date Description

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| 07 | 19 October 2007 | EB 35, Annex 11

- To include AM0002, AM0003, AM0010, and AM0011;
- Reference to the following tools was added: “Tool to calculate project emissions from electricity consumption”, “Tool to calculate project or leakage CO2 emissions from fossil fuel combustion”, and “Combined tool to identify the baseline scenario and demonstrate additionality”.

<table>
<thead>
<tr>
<th>06</th>
<th>22 June 2007</th>
<th>EB 32, Annex 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>- Include procedures for estimating emissions reductions from use of captured LFG for energy generation;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Expand the applicability to project activities where the captured LFG is used to supply consumers through a natural gas distribution network.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>05</th>
<th>15 December 2006</th>
<th>EB 28, Annex 9</th>
</tr>
</thead>
</table>
| | | Revision to:

 - Replace the procedure for estimating flare efficiency with a reference to the methodological “Tool to determine project emissions from flaring gases containing methane”.

<table>
<thead>
<tr>
<th>04</th>
<th>21 July 2006</th>
<th>EB 25, Annex 6</th>
</tr>
</thead>
</table>
| | | Revision to:

 - Allow the use of one measurement point for LFG captured, if the captured LFG is flared only and not used for energy and/or electricity generation;
 - Provide a default value for methane destruction flare efficiency (50%) should the methane destruction efficiency not be measured.

<table>
<thead>
<tr>
<th>03</th>
<th>12 May 2006</th>
<th>EB 24, Annex 6</th>
</tr>
</thead>
</table>
| | | Revision to:

 - Reflect that separate monitoring of LFG temperature and pressure is not required if the monitoring equipment used automatically adjusts the volume for these two parameters;
 - Incorporate the procedures of estimating emissions reductions to take into account situations where project activities may not utilize the captured LFG but require use of fossil fuel or purchased electricity in operating the project activity.
<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>30 September 2005</td>
<td>EB 21, Annex 9
Guidance on how to estimate the Adjustment Factor (AF) was provided.</td>
</tr>
<tr>
<td>01</td>
<td>03 September 2004</td>
<td>EB 15, Annex 1
Initial adoption.</td>
</tr>
</tbody>
</table>

Decision Class: Regulatory
Document Type: Standard
Business Function: Methodology
Keywords: Landfill