Draft amendment to the approved consolidated baseline and monitoring methodology ACM0005

“Increasing the blend in cement production”

I. SOURCE, DEFINITIONS AND APPLICABILITY

Sources

This consolidated baseline methodology is based on elements from the following proposed new methodologies:

- NM0045-rev2: “Birla Corporation Limited: CDM Project for “Optimal Utilization of Clinker”, whose project design document, and baseline study, monitoring and verification plans were developed by Birla Corporation Limited;

- NM0047-rev: “Indocement’s Sustainable Cement Production Project Blended Cement Component”, whose project design document, and baseline study, monitoring and verification plans were developed by PT. Indocement Tunggal Perkasa;

- NM0095: “ACC New Wadi Blended Cement Project”, whose project design document, and baseline study, monitoring and verification plans were developed by Agrinergy Ltd.;

- NM0106: “Baseline methodology for optimization of clinker use in the cement industry through investment in grinding technology”, whose project design document, and baseline study, monitoring and verification plans were developed by Ecossecurities Ldt.

This methodology also refers to the latest approved versions of the following tools:

- “Tool to calculate the emission factor for an electricity system”;

- “Tool for the demonstration and assessment of additionality”;

- “Assessment of the validity of the original/current baseline and to update of the baseline at the renewal of the crediting period”;

- “Project and leakage emissions from road transportation of freight”.

For more information regarding the proposed new methodologies and the tools as well as their consideration by the CDM Executive Board please refer to <http://cdm.unfccc.int/goto/MPappmeth>.

Selected approach from paragraph 48 of the CDM modalities and procedures

“Existing actual or historical emissions, as applicable”.

Definitions

For the purpose of this methodology, the following definitions apply:

Blended cement (BC). Blended cement is a mixture of clinker and additives containing less than 95% clinker.

Blended cement types. Blended cement types are defined by the national standard\(^1\) of the host country. Blended cement types are distinct products with different uses that have different additives and different shares of clinker (for example, Portland Pozzolana Cement or Portland Blast Furnace Slag etc).

\(^1\) In cases, where there is no national standard, revision to the methodology is deemed necessary.
Relevant cement type. Relevant cement type is the type of blended cement produced under the CDM project activity.

Additives. Additives are defined as materials (e.g. fly ash, gypsum, slag, pozzolana etc) to be blended with clinker to produce blended cement types.

Greenfield cement plant. Greenfield cement plant is defined as cement plant with no operational history at the start of the CDM project activity.

Applicability

This methodology is applicable to project activities that produce blended cement (BC) beyond current practices in the host country either (i) in Greenfield cement plant or (ii) in existing cement production plant by increasing the share of additives (i.e. reduce the share of clinker). The methodology is applicable under the following conditions:

- This methodology is applicable to domestically sold blended cement of the project activity plant and excludes export of blended cement;
- The methodology is not applicable if blending of cement outside the cement production plants is a common practice in the host country (e.g. localized blending in construction sites);
- All clinker used in the project activity shall be produced by the cement plant that is included within the project boundary, hence, cement grinding only plants cannot use this methodology (e.g. plants with no clinker manufacturing facility);
- Adequate data are available on cement types in the market.

II. BASELINE METHODOLOGY PROCEDURE

Project Boundary

The project boundary includes the cement production plant, any onsite power generation (if applicable), and the power generation in the grid (if applicable).

The power grid or plant from which the cement plant purchases electricity and its losses will be considered in determining indirect emissions. Any transport related emissions for the delivery of additional additives will be included in the emissions related to the project activity as leakage. Emissions reductions from transport of raw materials for clinker production are not taken into account as a conservative simplification.
Table 1: Emissions sources included in or excluded from the project boundary

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>Included?</th>
<th>Justification / Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcinations of raw material in the kiln</td>
<td>CO₂</td>
<td>Yes</td>
<td>Direct emission from clinker kiln</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td>Use of fuel in the kiln including burner</td>
<td>CO₂</td>
<td>Yes</td>
<td>Direct emissions from clinker kiln</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td>Use of fuel for drying raw materials & kiln fuel</td>
<td>CO₂</td>
<td>Excluded</td>
<td>excluded for simplification</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td>Use of electricity (grid and self generated) for the preparation of fuels and raw materials for clinker, and for the operation of equipments related to the kiln (engines, compressors, fans etc)</td>
<td>CO₂</td>
<td>Yes</td>
<td>Direct emission from self generation sources and indirect emission from plants connected to the grid supplying the plant with electricity for feeding system, preparation of materials, and driving kiln</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td>Use of electricity (grid and self generated) for the preparation of Additives and for Grinding cement types</td>
<td>CO₂</td>
<td>Yes</td>
<td>Direct emission from self generation sources and indirect emission from plants connected to the grid supplying the plant with electricity for crushing and grinding Additives and grinding cement</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td>Calcinations of raw material in the kiln</td>
<td>CO₂</td>
<td>Yes</td>
<td>Direct emission from clinker kiln</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td>Use of fuel in the kiln including burner</td>
<td>CO₂</td>
<td>Yes</td>
<td>Direct emission from clinker kiln</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td>Use of fuel in driers for</td>
<td>CO₂</td>
<td>Excluded</td>
<td>Excluded for simplification</td>
</tr>
</tbody>
</table>

Baseline

Project activity
<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>Included?</th>
<th>Justification / Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>drying raw materials & kiln fuel</td>
<td>CH₄</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td>Use of electricity (grid and self generated) for the preparation of</td>
<td>CO₂</td>
<td>Yes</td>
<td>Direct emission from self generation sources and indirect emission from plants connected to</td>
</tr>
<tr>
<td>fuels and raw materials for clinker, and for the operation of</td>
<td></td>
<td></td>
<td>the grid supplying the plant with electricity for feeding system, preparation of materials,</td>
</tr>
<tr>
<td>equipments related to the kiln (engines, compressors, fans etc)</td>
<td></td>
<td></td>
<td>and driving kiln</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td>Use of electricity (grid and self generated) for the preparation of</td>
<td>CO₂</td>
<td>Yes</td>
<td>Direct emission from self generation sources and indirect emission from plants connected to</td>
</tr>
<tr>
<td>Additives and for Grinding cement types</td>
<td></td>
<td></td>
<td>the grid supplying the plant with electricity for crushing and grinding Additives and grinding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cement</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded</td>
<td>Emissions negligible, excluded for simplification</td>
</tr>
</tbody>
</table>

Identification of the baseline scenario

Project participants shall identify the most plausible baseline scenario among all realistic and credible alternatives(s). Steps 2 and/or 3 of the latest approved version of the “Tool for the demonstration and assessment of additionality” should be used to assess which of these alternatives should be excluded from further consideration (e.g. alternatives where barriers are prohibitive or which are clearly economically unattractive). Where more than one credible and plausible alternative remains, project participants shall, as a conservative assumption, use the alternative baseline scenario that results in the lowest baseline emissions as the most likely baseline scenario.

In doing so, project participants shall consider all realistic and credible production scenarios for the relevant cement type that are consistent with current rules and regulations, including the existing practice of cement production, the proposed project activity, and practices in other manufacturing plants in the region using similar input/raw materials, and facing similar economic, market and technical circumstances.

Additionality

The additionality of the project activity shall be demonstrated and assessed using the latest version of the “Tool for the demonstration and assessment of additionality” approved by the CDM Executive Board.

In applying the tool, where investment analysis is used, project participants shall apply Option II (investment comparison analysis) or Option III (benchmark analysis).
While calculating the financial indicator for Options II or III, project participants shall consider the following components in the analysis:

- Capital expenditures related to the equipment/modifications in production lines required for the increase in the share of additives in the production of blended cement e.g. pneumatic systems/conveyors/bucket elevators for transfer of the additives, feeding systems, bag dust collectors, additional laboratory equipment for quality control, Cement Vertical Roller Mills, storage silos, facilities for handling and proportioning of additive materials such as hoppers and feeders;
- Savings related to decrease in energy consumption and other savings as a result of decrease in clinker production due to the increased use of additives;
- Costs related to the operation and maintenance of the cement production plant;
- Expenses related to development of in-house capacity and/or research to operate new blending technology and control the quality of blended cement;
- Costs related to the sourcing of blending material and material cost for blending;
- If required, other costs related to the marketing of the new blended cement, e.g. market awareness campaigns; and
- Additional revenues related to the increased production of cement (due to the increased share of additives), if applicable.

In applying the latest version of the “Tool for the demonstration and assessment of additionality”, where project participants use the barrier analysis, only the following barriers may be claimed:

First of its Kind

Only projects implementing blended cement projects for the first time are allowed to claim this barrier (i.e. project participants which are increasing the percentage of additives from a historical value to a higher value are not allowed to use this barrier).

In order to demonstrate additionality using “First of its Kind” barrier, the applicable geographical area shall include the entire domestic market in the host country and the methodology requires information concerning the market share for blended cement sold in the domestic market in the host country. The project activity shall be considered as the one that applies a technology that is different from any other technologies able to deliver the same output (blended cement) if the market share for blended cement in the host country is below 5%.

The market share shall be calculated as the percentage of the amount of blended cement in the total amount of all cement types produced in the host country (tons blended cement/total tons cement production x 100%) during the last three years prior to: (a) the start date of the CDM project activity; or (b) the start of validation, whatever is earlier. The market share value must be based on reliable and publicly available data sources (e.g. cement manufacturers associations or governmental agencies). Other CDM projects shall be included in this assessment.

Investment barriers

In case that project participants claim for investment barriers, they should follow the latest approved “Guidelines for objective demonstration and assessment of barriers” (EB 50, Annex 13).
Market acceptability barriers, inter alia

- Perception that high additive blended cement is of inferior quality;
- Lack of awareness of customers on the use high additive blended cement.

Claims on market acceptability barriers shall be supported by objective evidences using one or more of the following:

- Letters of complaints from customers, establishing the failure of blended cement to gain their confidence in the market. It should be demonstrated that such complaints is much higher than those received for any new similar product in the market;
- Circulars/notices or any other communication from public works department (Government Department) on the use of blended cement, clearly establishing their low/no preference for blended cement;
- Independent surveys conducted by third parties concluding that blended cement is not accepted in the market where the blended cement will be supplied.

Project participants should demonstrate in an objective manner how the CDM alleviates the claimed barriers to the new blended cement produced under the project activity, to a level that the project is not prevented anymore from occurring by such barrier. The project participants shall provide transparent and documented evidence as presented above and illustrated in the “Tool for the demonstration and assessment of additionality”.

Baseline emissions

The baseline emissions depend on two factors:

- The benchmark of share of clinker in the blended cement types produced in the host country; and
- The CO₂ emissions per tonne of clinker in the base year, which in turn depends on:
 - Quantity and carbon intensity of the fuels used in clinker making;
 - Quantity and carbon intensity of electricity;
 - CO₂ emissions from calcinations.

This methodology requires data from the base year to calculate the baseline emissions (CO₂ emissions per tonne of clinker in the base year: BE_clinker,BSL).

In case of existing cement plants, the base year is defined as the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken in determining CO₂ emissions per tonne of clinker.

In case of Greenfield cement plants, the base year for determining CO₂ emissions per tonne of clinker is defined as first operational year. For ex-ante calculation for the preparation of PDD, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions.
Baseline emissions are calculated as follows:

$$BE_y = BC_y \times \left(BE_{clinker,y} \times B_{Blend,y} + BE_{ele,ADD,BC} \right)$$ \hspace{1cm} (1)$$

Where:

- BE_y = Baseline emissions in year y (t CO₂)
- BC_y = Blended cement produced and sold in the domestic market in year y (t BC)
- $BE_{clinker,y}$ = CO₂ emissions per tonne of clinker in year y (t CO₂/t clinker)
- $B_{Blend,y}$ = Baseline benchmark of share of clinker per tonne of BC updated for year y (t clinker/t BC) (see Step 2 below)
- $BE_{ele,ADD,BC}$ = Baseline electricity emissions for BC grinding and preparation of additives (t CO₂/t of BC)

Step 1: Determination of $BE_{clinker,y}$

CO₂ emissions per tonne of clinker in year y ($BE_{clinker,y}$) are calculated as:

$$BE_{clinker,y} = \min(BE_{clinker,BSL}, PE_{clinker,y})$$ \hspace{1cm} (2)$$

Where:

- $BE_{clinker,y}$ = CO₂ emissions per tonne of clinker in year y (t CO₂/t clinker)
- $BE_{clinker,BSL}$ = CO₂ emissions per tonne of clinker in the base year (t CO₂/t clinker)
- $PE_{clinker,y}$ = CO₂ emissions per tonne of clinker in the project activity plant in year y (t CO₂/t clinker) (See project emission section below)

Step 1.1: Determination of $BE_{clinker,BSL}$

CO₂ emissions per tonne of clinker in the base year ($BE_{clinker,BSL}$) are calculated as:

$$BE_{clinker,BSL} = BE_{calc} + BE_{fossil fuel} + BE_{ele,grid,CLNK} + BE_{ele,sg,CLNK}$$ \hspace{1cm} (3)$$

Where:

- $BE_{clinker,BSL}$ = CO₂ emissions per tonne of clinker in the base year (t CO₂/t clinker)
- BE_{calc} = Baseline emissions per tonne of clinker due to calcinations of calcium carbonate and magnesium carbonate (t CO₂/t clinker)
- $BE_{fossil fuel}$ = Baseline emissions per tonne of clinker due to combustion of fossil fuels for clinker production (t CO₂/t clinker)
- $BE_{ele,grid,CLNK}$ = Baseline grid electricity emissions for clinker production per tonne of clinker (t CO₂/t clinker)
- $BE_{ele,sg,CLNK}$ = Baseline emissions from self generated electricity for clinker production per tonne of clinker (t CO₂/t clinker)

Step 1.1.1: Determination of BE_{calc}

Baseline emissions per tonne of clinker due to calcinations of calcium carbonate and magnesium carbonate (BE_{calc}) are calculated as:

$$BE_{calc} = 0.785 \times (OutCaO - InCaO) + 1.092 \times (OutMgO - InMgO) \over CLNK_{BSL}$$ \hspace{1cm} (4)$$
Where:

BE_{calcin} = Baseline emissions per tonne of clinker due to calcinations of calcium carbonate and magnesium carbonate (t CO$_2$/t clinker)

0.785 = Stoichiometric emission factor for CaO (t CO$_2$/t CaO)

1.092 = Stoichiometric emission factor for MgO (t CO$_2$/t MgO)

$InCaO$ = Baseline non-carbonated CaO content in the raw material (t CaO)

$OutCaO$ = Baseline CaO content in the clinker produced (t CaO)

$InMgO$ = Baseline non-carbonated MgO content in the raw material (t MgO)

$OutMgO$ = Baseline MgO content in the clinker produced (t MgO)

$CLNK_{\text{BSL}}$ = Annual production of clinker in the base year (t clinker)

Step 1.1.2: Determination of $BE_{\text{fossil fuel}}$

Baseline emissions per tonne of clinker due to combustion of fossil fuels for clinker production ($BE_{\text{fossil fuel}}$) are calculated as:

$$BE_{\text{fossil fuel}} = \sum_{i} \frac{FF_{i,\text{BSL}} \times EFF_{i}}{CLNK_{\text{BSL}}}$$

(5)

Where:

$BE_{\text{fossil fuel}}$ = Baseline emissions per tonne of clinker due to combustion of fossil fuels for clinker production (t CO$_2$/t clinker)

$FF_{i,\text{BSL}}$ = Fossil fuel of type i consumed for clinker production in the base year (t fuel)

EFF_{i} = Emission factor for fossil fuel i (t CO$_2$/t fuel)

$CLNK_{\text{BSL}}$ = Annual production of clinker in the base year (t clinker)

Step 1.1.3: Determination of $BE_{\text{ele,grid,CLNK}}$

Baseline grid electricity emissions for clinker production per tonne of clinker ($BE_{\text{ele,grid,CLNK}}$) are calculated as:

$$BE_{\text{ele,grid,CLNK}} = \frac{BELE_{\text{grid,CLNK}} \times EF_{\text{grid,BSL}}}{CLNK_{\text{BSL}}}$$

(6)

Where:

$BE_{\text{ele,grid,CLNK}}$ = Baseline grid electricity emissions for clinker production per tonne of clinker (t CO$_2$/t clinker)

$BELE_{\text{grid,CLNK}}$ = Grid electricity consumed for clinker production in base year (MWh)

$EF_{\text{grid,BSL}}$ = Baseline grid emission factor (t CO$_2$/MWh) (See Step 6.1 below)

$CLNK_{\text{BSL}}$ = Annual production of clinker in the base year (t clinker)

Step 1.1.4: Determination of $BE_{\text{ele,sg,CLNK}}$

Baseline emissions from self generated electricity for clinker production per tonne of clinker ($BE_{\text{ele,sg,CLNK}}$) are calculated as:

$$BE_{\text{ele,sg,CLNK}} = \frac{BELE_{\text{sg,CLNK}} \times EF_{\text{sg,BSL}}}{CLNK_{\text{BSL}}}$$

(7)
Where:

- $BE_{elec, clinker} =$ Baseline emissions from self generated electricity for clinker production per tonne of clinker (t CO₂/t clinker)
- $BELE_{sg, clinker} =$ Self generation of electricity for clinker production in the base year (MWh)
- $EF_{sg, BSL} =$ Emission factor for self generated electricity in the base year (t CO₂/MWh) (See Step 6.3 below)
- $CLNK_{BSL} =$ Annual production of clinker in the base year (t clinker)

Step 2: Determination of $B_{Blend,y}$

The “Region” for the benchmark calculation needs to be clearly determined and justified by project participants. The default is the national market but project participants can define a geographic region as the area where each of the following conditions are met: (i) at least 75% of project activity plant’s cement production is sold (percentage of domestic sales only); (ii) includes at least 5 other plants with the required published data required to calculate $B_{Blend,y}$; and (iii) the production in the region is at least four times the project activity plant’s output. Only domestically sold output is considered and any export of cement produced by the project activity plant are excluded in the estimation of emission reductions.

Step 2.1: Determination of baseline benchmark of share of clinker per tonne of BC at the start of the project activity ($B_{Blend,1}$)

Data concerning average blending ratio, annual production and import of the relevant cement type(s) in the region shall be collected for one year prior to the start date of CDM project activity.

Baseline benchmark of share of clinker per tonne of BC at the start of the project activity ($B_{Blend,1}$), which shall be used in the calculation of emission reduction for the first year of each crediting period, is determined as the lowest value among the following approaches:

(a) Average (weighted by production) mass fraction of clinker (t clinker/t BC) for the 5 plants producing cement with the highest share of additives:

(i) Identify the amount of the relevant cement type produced by each plant in the region;

(ii) Determine the average (weighted by production) mass fraction of clinker (t clinker/t BC) for the 5 plants producing cement with the highest share of additives of the relevant cement type in the region;

(iii) If the region comprises of less than 5 plants producing the relevant cement type, the national market should be used as the default region.

(b) Production weighted average mass fraction of clinker (t clinker/t BC) in the top 20% (in terms of share of additives) of the total production of the blended cement type:

(i) Identify the amount of the relevant cement type produced by each plant in the region;

(ii) Determine the production weighted average mass fraction of clinker (t clinker/t BC) in the top 20% (in terms of share of additives) of the total production of the blended cement type in the region;

(iii) If 20% falls on part capacity of a plant, that plant is included in the calculations.

(c) Mass fraction of clinker (t clinker/t BC) in the relevant cement type produced in the proposed project activity plant before the implementation of the CDM project activity:

(i) Determine the mass fraction of clinker (t clinker/t BC) in the relevant cement type produced in the proposed project activity plant before the implementation of the CDM project activity, if applicable (for Greenfield cement plant this option shall not be included in the analysis);
(ii) The project participants shall use the lowest share of clinker used over the 3 most recent years before the implementation of the CDM project activity.

Note: If the average annual amount of the relevant cement type imported by the host country is more than 10% of the total production volume in the region, the weighted average mass fraction of clinker in the relevant type of imported cement shall be considered in the analysis under approach (ai) and (bii) above as it would have been produced in a virtual plant located in the region. For example, if there are several companies importing the relevant cement type, the weighted average mass fraction of clinker in the imported cement from each company shall be considered as it would have been produced in a virtual one plant. In this case, the clinker share of the imported cement type may be obtained as specified on the cement bag or import document.

To determine the benchmark for approaches (ai) and (bii) below, statistically significant random sampling is done for the high blend brands in the relevant cement type in the region. In other words, for the cement type under consideration and for high blend brands in the region, random and statistically significant samples are selected and analyzed for the share of clinker by an independent laboratory. The sampling of the relevant type of blended cement type produced in the region should exclude cement plants or output from cement plants that have registered blended cement CDM project activities. If reliable and up to date annual data are available from reputable and verifiable external sources (for example, industry manufacturers association or government agencies), these may be used to determine the benchmark.

Step 2.2: Updating of baseline benchmark of share of clinker per tonne of BC for year y within the crediting period

The project participants shall recalculate the benchmark value for each crediting year y within the crediting period, starting from second year.

Baseline benchmark of share of clinker per tonne of BC updated for year y (BBlend,y) is determined as follows:

Step 2.2.1: For approaches (ai) and (bii) above, the project participants shall choose between 2 options to update the benchmark of share of clinker per tonne of BC

Option 1: Update the benchmark annually and incorporate only a decreasing trend of clinker share (a decreasing trend would require the baseline to remain constant);

Data concerning average blending ratio, annual production and import of the relevant cement type(s) in the region shall be collected. To calculate the benchmark value for year y, data should be collected for the year prior to the year y.

If the benchmark value calculated at year y is higher than previous year (y-1), the project participants shall use the benchmark value of the previous year (y-1).

BBlend,y replaces BBlend,y-1 if BBlend,y > BBlend,y-1

Otherwise, BBlend,y remains unchanged.

Option 2: Update the benchmark annually based on 2% default increase in the share of additives (i.e. decreasing share of clinker) up to the limit of the regulatory/product norm in the region/national market.

BBlend,y=BBlend,1 x (1-0.02)^y till BBlend,y reaches the limit of the regulatory/product norm in the region/national market for the share of clinker in the cement type.
Step 2.2.2: For approach (ciii) above, update the benchmark annually based on 2% default increase in the share of additives (i.e. decreasing share of clinker) up to the limit of the regulatory/product norm in the region/national market

\[B_{\text{Blend},y} = B_{\text{Blend},1} \times (1-0.02)^y \] till \(B_{\text{Blend},y} \) reaches the limit of the regulatory/product norm in the region/national market for the share of clinker in the cement type.

Step 2.3: Updating of baseline benchmark of share of clinker per tonne of BC at the renewal of the crediting period

At the renewal of the crediting period, the benchmark is recalculated following the Step 2.1 above. The basis (among the 3 options approaches contained in the Step 2.1 above) of the benchmark may change from the approach selected during the previous crediting period.

Step 3: Determination of \(BE_{\text{ele,ADD,BC}} \)

Baseline electricity emissions for BC grinding and preparation of additives (\(BE_{\text{ele,ADD,BC}} \)) are calculated as:

\[
BE_{\text{ele,ADD,BC}} = BE_{\text{ele,grid,BC}} + BE_{\text{ele,sg,BC}} + BE_{\text{ele,grid,ADD}} + BE_{\text{ele,sg,ADD}} \tag{8}
\]

Where:

- \(BE_{\text{ele,ADD,BC}} \) = Baseline electricity emissions for BC grinding and preparation of additives (t CO₂/t BC)
- \(BE_{\text{ele,grid,BC}} \) = Baseline grid electricity emissions for BC grinding (t CO₂/t BC)
- \(BE_{\text{ele,sg,BC}} \) = Baseline self generated electricity emissions for BC grinding (t CO₂/t BC)
- \(BE_{\text{ele,grid,ADD}} \) = Baseline grid electricity emissions for additive preparation (t CO₂/t BC)
- \(BE_{\text{ele,sg,ADD}} \) = Baseline self generated electricity emissions for additive preparation (t CO₂/t BC)

Step 3.1: Determination of \(BE_{\text{ele,grid,BC}} \)

Baseline grid electricity emissions for BC grinding (\(BE_{\text{ele,grid,BC}} \)) are calculated as:

\[
BE_{\text{ele,grid,BC}} = \frac{BE_{\text{ele,grid,BC}} \times EF_{\text{grid,BSL}}}{BC_{\text{BSL}}} \tag{9}
\]

Where:

- \(BE_{\text{ele,grid,BC}} \) = Baseline grid electricity emissions for BC grinding (t CO₂/t BC)
- \(BE_{\text{ele,grid,BC}} \) = Baseline grid electricity for grinding BC (MWh)
- \(EF_{\text{grid,BSL}} \) = Baseline grid emission factor (t CO₂/MWh) (See Step 6.1 below)
- \(BC_{\text{BSL}} \) = Annual production of BC in the base year (t BC)

Step 3.2: Determination of \(BE_{\text{ele,sg,BC}} \)

Baseline self generated electricity emissions for BC grinding (\(BE_{\text{ele,sg,BC}} \)) are calculated as:

\[
BE_{\text{ele,sg,BC}} = \frac{BE_{\text{ele,sg,BC}} \times EF_{\text{sg,BSL}}}{BC_{\text{BSL}}} \tag{10}
\]
Where:

- $BE_{ele,sg,BC}$ = Baseline self generated electricity emissions for BC grinding (t CO$_2$/t BC)
- $BELE_{sg,BC}$ = Baseline self generation electricity for grinding BC (MWh)
- $EF_{sg,BSL}$ = Emission factor for self generated electricity in the base year (t CO$_2$/MWh) (See Step 6.3 below)
- BC_{BSL} = Annual production of BC in the base year (t BC)

Step 3.3: Determination of $BE_{ele,grid,ADD}$

Baseline grid electricity emissions for additive preparation ($BE_{ele,grid,ADD}$) are calculated as:

$$BE_{ele,grid,ADD} = \frac{BELE_{grid,ADD} \times EF_{grid,BSL}}{BC_{BSL}} \quad (11)$$

Where:

- $BE_{ele,grid,ADD}$ = Baseline grid electricity emissions for additive preparation (t CO$_2$/t BC)
- $BELE_{grid,ADD}$ = Baseline grid electricity for grinding additives (MWh)
- $EF_{grid,BSL}$ = Baseline grid emission factor (t CO$_2$/MWh) (See Step 6.1 below)
- BC_{BSL} = Annual production of BC in the base year (t BC)

Step 3.4: Determination of $BE_{ele,sg,ADD}$

Baseline self generated electricity emissions for additive preparation ($BE_{ele,sg,ADD}$) are calculated as:

$$BE_{ele,sg,ADD} = \frac{BELE_{sg,ADD} \times EF_{sg,BSL}}{BC_{BSL}} \quad (12)$$

Where:

- $BE_{ele,sg,ADD}$ = Baseline self generated electricity emissions for additive preparation (t CO$_2$/t BC)
- $BELE_{sg,ADD}$ = Baseline self generation electricity for grinding additives (MWh)
- $EF_{sg,BSL}$ = Emission factor for self generated electricity in the base year (t CO$_2$/MWh) (See Step 6.3 below)
- BC_{BSL} = Annual production of BC in the base year (t BC)

Project Emissions

In the project activity plant emissions are determined per unit of clinker or per unit of BC accounting for:

(i) Emissions from calcinations of limestone;
(ii) Emissions from combustion of fossil fuel and electricity for clinker production and processing of raw material;
(iii) Emissions from electricity used for additives preparation and grinding of cement.

The project emissions are calculated as:

$$PE_y = BC_y \times \left(PE_{clinker,y} \times P_{Blend,y} + PE_{ele,ADD,BC,y} \right) \quad (13)$$

Where:

- PE_y = Project emissions in year y (t CO$_2$)
- BC_y = Blended cement produced and sold in the domestic market in year y (t BC)
- $PE_{clinker,y}$ = CO$_2$ emissions per tonne of clinker in the project activity plant in year y (t CO$_2$/t clinker)
\[P_{\text{Blend},y} = \text{Share of clinker per tonne of BC in year } y \text{ (t clinker/t BC)} \]
\[P_{\text{ele},\text{ADD},BC,y} = \text{Electricity emissions for BC grinding and preparation of additives in year } y \text{ (t CO}_2/\text{t BC)} \]

Step 4: Determination of \(P_{\text{c,inker},y} \)

\(\text{CO}_2 \text{ emissions per tonne of clinker in the project activity plant in year } y \) \((P_{\text{c,inker},y})\) are calculated as:

\[P_{\text{c,inker},y} = P_{\text{calc,in},y} + P_{\text{fossil fuel},y} + P_{\text{ele,grid,CLNK},y} + P_{\text{ele,sg,CLNK},y} \] \hspace{1cm} (14)

Where:
- \(P_{\text{c,inker},y} = \text{CO}_2 \text{ emissions per tonne of clinker in the project activity plant in year } y \) (t CO\(_2\)/t clinker)
- \(P_{\text{calc,in},y} = \text{Emissions per tonne of clinker due to calcinations of calcium carbonate and magnesium carbonate in year } y \) (t CO\(_2\)/t clinker)
- \(P_{\text{fossil fuel},y} = \text{Emissions per tonne of clinker due to combustion of fossil fuels for clinker production in year } y \) (t CO\(_2\)/t clinker)
- \(P_{\text{ele,grid,CLNK},y} = \text{Grid electricity emissions for clinker production per tonne of clinker in year } y \) (t CO\(_2\)/t clinker)
- \(P_{\text{ele,sg,CLNK},y} = \text{Emissions from self-generated electricity per tonne of clinker production in year } y \) (t CO\(_2\)/t clinker)

Step 4.1: Determination of \(P_{\text{calc,in},y} \)

Emissions per tonne of clinker due to calcinations of calcium carbonate and magnesium carbonate in year \(y \) \((P_{\text{calc,in},y})\) are calculated as:

\[P_{\text{calc,in},y} = \frac{0.785 \times (\text{OutCaO}_y - \text{InCaO}_y) + 1.092 \times (\text{OutMgO}_y - \text{InMgO}_y)}{\text{CLNK}_y} \] \hspace{1cm} (15)

Where:
- \(P_{\text{calc,in},y} = \text{Emissions from the calcinations of limestone (t CO}_2/\text{t clinker)} \)
- 0.785 = Stoichiometric emission factor for CaO (t CO\(_2\)/t CaO)
- 1.092 = Stoichiometric emission factor for MgO (t CO\(_2\)/t MgO)
- \(\text{InCaO}_y = \text{Non-carbonated CaO content in the raw material in year } y \) (t CaO)
- \(\text{OutCaO}_y = \text{CaO content in the clinker produced in year } y \) (t CaO)
- \(\text{InMgO}_y = \text{Non-carbonated MgO content in the raw material in year } y \) (t MgO)
- \(\text{OutMgO}_y = \text{MgO content in the clinker produced in year } y \) (t MgO)
- \(\text{CLNK}_y = \text{Clinker production in year } y \) (t clinker)

Step 4.2: Determination of \(P_{\text{fossil fuel},y} \)

Emissions per tonne of clinker due to combustion of fossil fuels for clinker production in year \(y \) \((P_{\text{fossil fuel},y})\) are calculated as:

\[P_{\text{fossil fuel},y} = \frac{\sum FF_{\text{fuel},i,y} \times EFF_{\text{t},i,y}}{\text{CLNK}_y} \] \hspace{1cm} (16)
Where:

\[PE_{\text{fossil fuel}, y} = \text{Emissions per tonne of clinker due to combustion of fossil fuels for clinker production in year } y \ (t \ CO_2/t \ clinker) \]

\[FF_{i,y} = \text{Fossil fuel of type } i \text{ consumed for clinker production in year } y \ (t \ fuel) \]

\[EFF_{i} = \text{Emission factor for fossil fuel } i \ (t \ CO_2/ t \ fuel) \]

\[CLNK_y = \text{Clinker production in year } y \ (t \ clinker) \]

Step 4.3: Determination of \(PE_{\text{ele,grid}, CLNK,y} \)

Grid electricity emissions for clinker production per tonne of clinker in year \(y \) \((PE_{\text{ele,grid}, CLNK,y})\) are calculated as:

\[
PE_{\text{ele,grid}, CLNK,y} = \frac{PEL_{\text{grid}, CLNK,y} \times EF_{\text{grid}, y}}{CLNK_y}
\]

Where:

\[PEL_{\text{grid}, CLNK,y} = \text{Grid electricity emissions for clinker production per tonne of clinker in year } y \ (t \ CO_2/t \ clinker) \]

\[EF_{\text{grid}, y} = \text{Grid emission factor in year } y \ (t \ CO_2/MWh) \ (\text{See Step 6.1 below}) \]

\[CLNK_y = \text{Clinker production in year } y \ (t \ clinker) \]

Step 4.4: Determination of \(PE_{\text{ele,sg}, CLNK,y} \)

Emissions from self-generated electricity per tonne of clinker production in year \(y \) \((PE_{\text{ele,sg}, CLNK,y})\) are calculated as:

\[
PE_{\text{ele,sg}, CLNK,y} = \frac{PEL_{\text{sg}, CLNK,y} \times EF_{\text{sg}, y}}{CLNK_y}
\]

Where:

\[PEL_{\text{sg}, CLNK,y} = \text{Self generation of electricity for clinker production in year } y \ (MWh) \]

\[EF_{\text{sg}, y} = \text{Emission factor for self generated electricity in year } y \ (t \ CO_2/MWh) \ (\text{See Step 6.2 below}) \]

\[CLNK_y = \text{Clinker production in year } y \ (t \ clinker) \]

Step 5: Determination of \(PE_{\text{ele,ADD,BC,y}} \)

Electricity emissions for BC grinding and preparation of additives in year \(y \) \((PE_{\text{ele,ADD,BC,y}})\) are calculated as:

\[
PE_{\text{ele,ADD,BC,y}} = PE_{\text{ele,grid,BC,y}} + PE_{\text{ele,sg,BC,y}} + PE_{\text{ele,grid,ADD,y}} + PE_{\text{ele,sg,ADD,y}}
\]

Where:

\[PE_{\text{ele,ADD,BC,y}} = \text{Electricity emissions for BC grinding and preparation of additives in year } y \ (t \ CO_2/t \ BC) \]

\[PE_{\text{ele,grid,BC,y}} = \text{Grid electricity emissions for BC grinding in year } y \ (t \ CO_2/t \ BC) \]

\[PE_{\text{ele,sg,BC,y}} = \text{Emissions from self generated electricity for BC grinding in year } y \ (t \ CO_2/t \ BC) \]
\(PE_{ele,grid,ADD,y} = \) Grid electricity emissions for additive preparation in year \(y \) (t CO₂/t BC)

\(PE_{ele,sg,ADD,y} = \) Emissions from self generated electricity additive preparation in year \(y \) (t CO₂/t BC)

Step 5.1: Determination of \(PE_{ele,grid,BC,y} \)

Grid electricity emissions for BC grinding in year \(y \) (\(PE_{ele,grid,BC,y} \)) are calculated as:

\[
PE_{ele,grid,BC,y} = \frac{PEL_{ele,grid,BC,y} \times EF_{grid,y}}{BC_y} \tag{20}
\]

Where:

- \(PE_{ele,grid,BC,y} \) = Grid electricity emissions for BC grinding in year \(y \) (t CO₂/t BC)
- \(PEL_{ele,grid,BC,y} \) = Grid electricity for grinding BC in year \(y \) (MWh)
- \(EF_{grid,y} \) = Grid emission factor in year \(y \) (t CO₂/MWh) (See Step 6.1 below)
- \(BC_y \) = Blended cement produced and sold in the domestic market in year \(y \) (t BC)

Step 5.2: Determination of \(PE_{ele,sg,BC,y} \)

Emissions from self generated electricity for BC grinding in year \(y \) (\(PE_{ele,sg,BC,y} \)) are calculated as:

\[
PE_{ele,sg,BC,y} = \frac{PEL_{ele,sg,BC,y} \times EF_{sg,y}}{BC_y} \tag{21}
\]

Where:

- \(PE_{ele,sg,BC,y} \) = Emissions from self generated electricity for BC grinding in year \(y \) (t CO₂/t BC)
- \(PEL_{ele,sg,BC,y} \) = Self generated electricity for grinding BC in year \(y \) (MWh)
- \(EF_{sg,y} \) = Emission factor for self generated electricity in year \(y \) (t CO₂/MWh) (See Step 6.2 below)
- \(BC_y \) = Blended cement produced and sold in the domestic market in year \(y \) (t BC)

Step 5.3: Determination of \(PE_{ele,grid,ADD,y} \)

Grid electricity emissions for additive preparation in year \(y \) (\(PE_{ele,grid,ADD,y} \)) are calculated as:

\[
PE_{ele,grid,ADD,y} = \frac{PEL_{ele,grid,ADD,y} \times EF_{grid,y}}{BC_y} \tag{22}
\]

Where:

- \(PE_{ele,grid,ADD,y} \) = Grid electricity emissions for additive preparation in year \(y \) (t CO₂/t BC)
- \(PEL_{ele,grid,ADD,y} \) = Grid electricity for grinding additives in year \(y \) (MWh)
- \(EF_{grid,y} \) = Grid emission factor in year \(y \) (t CO₂/MWh) (See Step 6.1 below)
- \(BC_y \) = Blended cement produced and sold in the domestic market in year \(y \) (t BC)
Step 5.4: Determination of \(PE_{ele,sg,ADD,y} \)

Emissions from self generated electricity additive preparation in year \(y \) \((PE_{ele,sg,ADD,y}) \) are calculated as:

\[
PE_{ele,sg,ADD,y} = \frac{PEL_{ele,sg,ADD,y} \times EF_{sg,y}}{BC_y}
\]
\((23) \)

Where:
- \(PE_{ele,sg,ADD,y} \) = Emissions from self generated electricity additive preparation in year \(y \) (t CO\(_2\)/t BC)
- \(PEL_{ele,sg,ADD,y} \) = Self generation electricity for grinding additives in year \(y \) (MWh)
- \(EF_{sg,y} \) = Emission factor for self generated electricity in year \(y \) (t CO\(_2\)/MWh) (See Step 6.2 below)
- \(BC_y \) = Blended cement produced and sold in the domestic market in year \(y \) (t BC)

Step 6: Determination of Electricity Emission Factors (\(EF_{grid,BSL} \), \(EF_{grid,y} \), \(EF_{sg,y} \) and \(EF_{sg,BSL} \))

Step 6.1: Determination of \(EF_{grid,BSL} \) and \(EF_{grid,y} \)

Baseline grid emission factor (\(EF_{grid,BSL} \)) and grid emission factor in year \(y \) (\(EF_{grid,y} \)) shall be calculated using the latest version of the “Tool to calculate the emission factor for an electricity system”.

Step 6.2: Determination of \(EF_{sg,y} \)

The emission factor for self generated electricity in year \(y \) (\(EF_{sg,y} \)) is calculated as the generation-weighted average emissions per electricity unit (t CO\(_2\)/MWh) of all self-generating sources in the project boundary serving the system in year \(y \).

\[
EF_{sg,y} = \frac{\sum_{i,j} F_{i,j,y} \times COEF_i}{\sum_j GEN_{j,y}}
\]
\((24) \)

\[
EF_{sg,y} = \frac{\sum_{k,j} F_{k,j,y} \times COEF_k}{\sum_j GEN_{j,y}}
\]
\((24) \)

Where:
- \(EF_{sg,y} \) = Emission factor for self generated electricity in year \(y \) (t CO\(_2\)/MWh)
- \(F_{i,j,y} \) = Amount of fuel \(i \) consumed by relevant power sources \(j \) in year \(y \) (mass or volume unit)
- \(j \) = On-site power sources
- \(COEF_i \) = CO\(_2\) emission coefficient of fuel \(i \), taking into account the carbon content of the fuels used by relevant power sources \(j \) and the percent oxidation of the fuel in year \(y \) (t CO\(_2\)/mass or volume unit)
- \(GEN_{j,y} \) = Electricity generated by the source \(j \) in year \(y \) (MWh)
CO₂ emission coefficient of fuel \(i_k\) (\(COEF_{i_k}\)) is obtained as:

\[
COEF_i = NCV_i \times EF_{CO2,i} \times OXID_i
\]

\[
COEF_k = NCV_k \times EF_{CO2,k} \times OXID_k
\]

Where:
- \(COEF_{i_k}\) = CO₂ emission coefficient of fuel \(i_k\), taking into account the carbon content of the fuels used by relevant power sources \(j\) and the percent oxidation of the fuel in year \(y\) (t CO₂/mass or volume unit)
- \(NCV_{i_k}\) = Net calorific value per mass or volume unit of a fuel \(i_k\) (GJ/mass or volume unit)
- \(OXID_{i_k}\) = Oxidation factor of the fuel \(i_k\) (see page 1.29 in the 1996 Revised IPCC Guidelines for default values)
- \(EF_{CO2,i_k}\) = CO₂ emission factor per unit of energy of the fuel \(i_k\) (t CO₂/GJ)

Step 6.3: Determination of \(EF_{sg,BSL}\)

Emission factor for self generated electricity in the base year (\(EF_{sg,BSL}\)) is calculated as the generation-weighted average emissions per electricity unit (t CO₂/MWh) of all self-generating sources in the project boundary serving the system in the base year.

\[
EF_{sg,BSL} = \frac{\sum_{m,n} F_{m,n,BSL} \times COEF_m}{\sum_{n} GEN_{n,BSL}}
\]

Where:
- \(EF_{sg,BSL}\) = Emission factor for self generated electricity in the base year (t CO₂/MWh)
- \(F_{m,n,BSL}\) = Amount of fuel \(m\) consumed by relevant power sources \(n\) in the base year (mass or volume unit)
- \(n\) = On-site power sources
- \(COEF_m\) = CO₂ emission coefficient of fuel \(m\), taking into account the carbon content of the fuels used by relevant power sources \(n\) and the percent oxidation of the fuel in the base year (t CO₂/mass or volume unit)
- \(GEN_{n,BSL}\) = Electricity generated by the source \(n\) in year \(y\) (MWh)

CO₂ emission coefficient of fuel \(m\) (\(COEF_m\)) is obtained as:

\[
COEF_m = NCV_m \times EF_{CO2,m} \times OXID_m
\]

Where:
- \(COEF_m\) = CO₂ emission coefficient of fuel \(m\), taking into account the carbon content of the fuels used by relevant power sources \(n\) and the percent oxidation of the fuel in the base year (t CO₂/mass or volume unit)
- \(NCV_m\) = Net calorific value per mass or volume unit of a fuel \(m\) (GJ/mass or volume unit)
- \(OXID_m\) = Oxidation factor of the fuel \(m\)
- \(EF_{CO2,m}\) = CO₂ emission factor per unit of energy of the fuel \(m\) (t CO₂/GJ)
Leakage

Leakage emissions consist of:

- Leakage emissions due to transport of additional additives; and
- Leakage emissions due to the diversion of additives from existing uses.

\[
LE_y = LE_{TR,y} + LE_{ADD,y}
\]

(28)

Where,

- \(LE_y\) = Leakage emissions in year \(y\) (t CO₂)
- \(LE_{TR,y}\) = Leakage emissions due to transport of additional additives in year \(y\) (t CO₂)
- \(LE_{ADD,y}\) = Leakage emissions due to the diversion of additives from existing uses in year \(y\) (t CO₂)

Step 7: Determination of leakage emissions due to transport of additional additives

Leakage emissions due to transport of additional additives in year \(y\) (\(LE_{TR,y}\)) are calculated applying the latest approved version of the methodological tool “Project and leakage emissions from road transportation of freight” where \(LE_{TR,y}\) corresponds to \(LE_{TR,m}\) in the tool, and \(Q_{ADD,y}\) corresponds to \(FR_{f,m}\) in the tool.

Step 7.1: Determination of \(Q_{ADD,y}\)

\[
Q_{ADD,y} = (A_{PJ,blend,y} - A_{BSL,blend,y}) \times BC_y
\]

(29)

Where:

- \(Q_{ADD,y}\) = Quantity of additional additives transported in year \(y\) (t additives). This parameter shall be used in stead of \(FR_{f,m}\) in the tool “Project and leakage emissions from road transportation of freight”
- \(BC_y\) = Blended cement produced and sold in the domestic market in year \(y\) (t BC)
- \(A_{PJ,blend,y}\) = Share of additives per tonne of BC in year \(y\) (t additives /t BC)
- \(A_{BSL,blend,y}\) = Baseline share of additives per tonne of BC updated for year \(y\) (t additives /t BC)

Step 8: Determination of leakage emissions due to the diversion of additives from existing uses

Another possible leakage is due to the diversion of additives from existing uses.

In this case, project participants shall demonstrate that the use of the additives do not result in increased emissions elsewhere. For this purpose, project participants shall assess as part of the monitoring the supply situation for the additives used in the project activity. The following options shall be used to demonstrate that the additives used in the project activity did not increase emissions elsewhere:

1. Demonstrate that at the sites from where the project activity is receiving additives, the additives have not been collected or utilized but have been dumped, land-filled, not excavated or burnt prior to the implementation of the project activity. Demonstrate that this practice would continue in the absence of the CDM project activity, e.g. by showing that in the monitored period no market has emerged for the additives considered, no price has been allocated for the additives other than transport, excavation and/or processing or by showing that it would still not be feasible to utilize the additives for any purposes (e.g. due to the remote location where the additives are generated). At the renewal of crediting period, the project participants shall re-demonstrate this requirement. This approach is applicable to situations where project participants use only
additives from specific sites and do not purchase additives from the market. During each verification, DOE shall check that the additives are sourced from the same sites as indicated in the PDD.

L2

Demonstrate that there is an abundant surplus of the additives in the country zone from where the additives are sourced from. For this purpose, demonstrate that the quantity of available additives in the country zone is at least 25% larger than the quantity of additives that are utilized within the zone and, including, the project activity. The zone for the purpose of demonstration of abundant surplus of the additives shall be considered as either (i) the entire country from where the additives are sourced from, or (ii) area defined by the project participants, with radius of at least 200 km from where the additives are sourced. This shall be demonstrated during each crediting year. In case, the source of additives changes during the crediting year and the zone has to be redefined, then the project participants shall follow the relevant procedures for such changes.

Where project participants wish to use approach L1 and did not meet the above condition in L1, the leakage emissions due to the diversion of additives from existing uses in year y shall be calculated as follows:

$$LE_{ADD,y} = (BE_y - PE_y) \times \alpha_y$$ \hspace{1cm} (30)

Where:
- $LE_{ADD,y}$ = Leakage emissions due to the diversion of additives from existing uses in year y (t CO$_2$)
- BE_y = Baseline emissions in year y (t CO$_2$)
- PE_y = Project emissions in year y (t CO$_2$)
- α_y = Leakage penalty factor in year y (fraction)

Step 8.1: Determination of α_y

$$\alpha_y = \frac{ADD_{NS,y}}{ADD_y}$$ \hspace{1cm} (31)

Where:
- α_y = Leakage penalty factor in year y (fraction)
- $ADD_{NS,y}$ = Amount of additives used for BC production in project plant for which the project participants could not substantiate that they are surplus in year y (t additives)
- ADD_y = Amount of additives used for BC production in project plant in year y (t additives)

Where project participants wish to use approach L2 and did not meet the above condition in L2 in any of the crediting year, emission reductions for that crediting year shall be regarded as zero.

Emission Reductions

The emission reductions are calculated as:

$$ER_y = BE_y - PE_y - LE_y$$ \hspace{1cm} (32)

Where:
- ER_y = Emissions reductions in year y due to project activity in year y (t CO$_2$)
- BE_y = Baseline emissions in year y (t CO$_2$)
- PE_y = Project emissions in year y (t CO$_2$)
- LE_y = Leakage emissions in year y (t CO$_2$)
In the case that overall negative emission reductions arise in a year, emission reductions are not issued to project participants for the year concerned and in subsequent years, until emission reductions from subsequent years have compensated the quantity of negative emission reductions from the year concerned. (For example: if negative emission reductions of 30 t CO₂e occur in the year t and positive emission reductions of 100 t CO₂e occur in the year t+1, 0 CERs are issued for year t and only 70 CERs are issued for the year t+1.)

In case the project activity consists of production of more than one cement type, the emission reduction shall be calculated above for each cement type i produced. The total emission reduction from the project activity shall be calculated as the sum of emission reductions for all cement types i produced.

Changes required for methodology implementation in 2nd and 3rd crediting periods

Refer to the latest approved version of the Methodological tool “Assessment of the validity of the original/current baseline and to update of the baseline at the renewal of the crediting period”.

While applying the Step 1.4 of the tool, the benchmark value B_\text{Blend,y} is recalculated following Step 2.1 above.

Data and parameters not monitored

In addition to the data and parameters listed below, the guidance on all tools to which this methodology refers applies.

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>EFF_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t CO₂/t fuel</td>
</tr>
<tr>
<td>Description:</td>
<td>Emission factor for fossil fuel i</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Actual measured or local data is to be used. If not available, regional data should be used and, in its absence, IPCC defaults can be used from the most recent version of IPCC Guidelines for National Greenhouse Gas Inventories</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>OXID_{i,k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>-</td>
</tr>
<tr>
<td>Description:</td>
<td>Oxidation factor of the fuel i k</td>
</tr>
<tr>
<td>Source of data:</td>
<td>See page 1.29 in the 1996 Revised IPCC Guidelines for default values</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter: \(E_{\text{CO}_2} \) \(i \) \(E_{\text{CO}_2} \) \(k \)

<table>
<thead>
<tr>
<th>Data unit:</th>
<th>t (\text{CO}_2 / \text{unit of energy}) GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>(\text{CO}_2) emission factor per unit of energy of the fuel (i) (k)</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Actual measured or local data is to be used. If not available, regional data should be used and, in its absence, IPCC defaults can be used from the most recent version of IPCC Guidelines for National Greenhouse Gas Inventories</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>-</td>
</tr>
</tbody>
</table>

Parameter: \(\text{InCaO} \)

<table>
<thead>
<tr>
<th>Data unit:</th>
<th>t (\text{CaO})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Baseline non-carbonated (\text{CaO}) content in the raw material</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records. In case of existing plants, historical data and in case of Greenfield cement plants, the data from first operational year.</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>This parameter is calculated as the non-carbonated (\text{CaO}) content (%) of the raw material times the raw material quantity ([Q_{\text{rm}}]). Project participants can use a conservative default value of 2% for the non-carbonated (\text{CaO}) content of the raw material if they can demonstrate that they were not using non-carbonated raw materials, for example, gypsum, anhydrite, and fluorite etc</td>
</tr>
<tr>
<td>Any comment:</td>
<td>In case of existing plants, this parameter shall be based on historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken. In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions. Non-carbonated (\text{CaO}) content (%) shall be calculated as the percentage of (\text{CaO}) in the total raw material</td>
</tr>
</tbody>
</table>

Parameter: \(\text{OutCaO} \)

<table>
<thead>
<tr>
<th>Data unit:</th>
<th>t (\text{CaO})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Baseline (\text{CaO}) content in the clinker produced</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>This parameter is calculated as the (\text{CaO}) content (%) of the clinker times clinker produced (\text{CLNK}_{\text{BSL}})</td>
</tr>
<tr>
<td>Any comment:</td>
<td>In case of existing plants, this parameter shall be based on historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken. In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions</td>
</tr>
<tr>
<td>Parameter:</td>
<td>InMgO</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Data unit:</td>
<td>t MgO</td>
</tr>
<tr>
<td>Description:</td>
<td>Baseline non-carbonated MgO content in the raw material</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>This parameter is calculated as the non-carbonated MgO content (%) of the raw material times the raw material quantity ([Q_{rm}])</td>
</tr>
<tr>
<td>Any comment:</td>
<td>In case of existing plants, this parameter shall be based on historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken. In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions. Non-carbonated MgO content (%) shall be calculated as the percentage of MgO in the total raw material.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>OutMgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t MgO</td>
</tr>
<tr>
<td>Description:</td>
<td>Baseline MgO content in the clinker produced</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>This parameter is calculated as the MgO content (%) of the clinker times clinker produced ([CLNK_{BSL}])</td>
</tr>
<tr>
<td>Any comment:</td>
<td>In case of existing plants, this parameter shall be based on historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken. In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Q_{rm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t raw materials</td>
</tr>
<tr>
<td>Description:</td>
<td>Quantity of clinker raw material used in the base year</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Weight meters</td>
</tr>
</tbody>
</table>
Parameter: CLNK_{BSL}
Data unit: t clinker
Description: Annual production of clinker in the base year
Source of data: On-site measurements in plant records
Measurement procedures (if any): Weight meters

Any comment: In case of existing plants, this parameter shall be based on historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken.
In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of the first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions.
This parameter is used to calculate InCaO and InMgO.

Parameter: FFi_{BSL}
Data unit: t fuel
Description: Fossil fuel of type i consumed for clinker production in the base year
Source of data: On-site measurements in plant records
Measurement procedures (if any): Weight meters

Any comment: In case of existing plants, this parameter shall be based on historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken.
In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of the first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions.
<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Parameter: BELE\text{grid,CLNK}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>MWh</td>
</tr>
<tr>
<td>Description:</td>
<td>Grid electricity consumed for clinker production in base year</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Electricity meter</td>
</tr>
<tr>
<td>Any comment:</td>
<td>In case of existing plants, this parameter shall be based on historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken. In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of the first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Parameter: BELE\text{self,CLNK}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>MWh</td>
</tr>
<tr>
<td>Description:</td>
<td>Self generation of electricity for clinker production in the base year</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Electricity meter</td>
</tr>
<tr>
<td>Any comment:</td>
<td>In case of existing plants, this parameter shall be based on historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken. In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of the first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Parameter: BC\text{BSL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t BC</td>
</tr>
<tr>
<td>Description:</td>
<td>Annual production of BC in the base year</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Weight meters</td>
</tr>
<tr>
<td>Any comment:</td>
<td>In case of existing plants, this parameter shall be based on historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken. In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of the first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions</td>
</tr>
<tr>
<td>Parameter:</td>
<td>Description:</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>(\text{BELE}_{\text{self}, \text{BC}})</td>
<td>Baseline self generation electricity for grinding BC</td>
</tr>
<tr>
<td>(\text{BELE}_{\text{grid}, \text{BC}})</td>
<td>Baseline grid electricity for grinding BC</td>
</tr>
<tr>
<td>(\text{BELE}_{\text{grid}, \text{ADD}})</td>
<td>Baseline grid electricity for grinding additives</td>
</tr>
<tr>
<td>Parameter:</td>
<td>BELE<sub>SegADD</sub></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Data unit:</td>
<td>MWh</td>
</tr>
<tr>
<td>Description:</td>
<td>Baseline self generation electricity for grinding additives</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Electricity meters</td>
</tr>
<tr>
<td>Any comment:</td>
<td>In case of existing plants, this parameter shall be based of historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken. In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>F<sub>m,n,BSL</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>mass or volume unit</td>
</tr>
<tr>
<td>Description:</td>
<td>Amount of fuel m consumed by relevant power sources n in the base year</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Use weight or volume meters</td>
</tr>
<tr>
<td>Any comment:</td>
<td>In case of existing plants, this parameter shall be based of historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken. In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>GEN<sub>n,BSL</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>MWh</td>
</tr>
<tr>
<td>Description:</td>
<td>Electricity generated by the source n in year y</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Use electricity meters</td>
</tr>
<tr>
<td>Any comment:</td>
<td>In case of existing plants, this parameter shall be based of historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken. In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions.</td>
</tr>
</tbody>
</table>
Parameter: NCV_m
Data unit: GJ/mass or volume unit
Description: Net calorific value per mass or volume unit of a fuel <i>m</i>

<table>
<thead>
<tr>
<th>Source of data</th>
<th>The following data sources may be used if the relevant conditions apply:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data source</td>
</tr>
<tr>
<td>a)</td>
<td>Values provided by the fuel supplier in invoices</td>
</tr>
<tr>
<td>b)</td>
<td>Measurements by the project participants</td>
</tr>
</tbody>
</table>
| c) | Regional or national default values | If b) is not available
| | These sources can only be used for liquid fuels and should be based on well documented, reliable sources (such as national energy balances) | |
| d) | IPCC default values at the upper limit of the uncertainty at a 95% confidence interval as provided in Table 1.2 of Chapter 1 of Vol. 2 (Energy) of the 2006 IPCC Guidelines on National GHG Inventories | If c) is not available |

Measurement procedures (if any):
For a) and b): Measurements should be undertaken in line with national or international fuel standards

Any comment:
Verify if the values under a), b) and c) are within the uncertainty range of the IPCC default values as provided in Table 1.2, Vol. 2 of the 2006 IPCC Guidelines. If the values fall below this range collect additional information from the testing laboratory to justify the outcome or conduct additional measurements. The laboratories in a), b) or c) should have ISO17025 accreditation or justify that they can comply with similar quality standards
In case of existing plants, this parameter shall be based of historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken
In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions
Parameter: OXID_m
Data unit: -
Description: Oxidation factor of the fuel \(m \)
Source of data: Refer to the latest version of the IPCC Guidelines for default values
Measurement procedures (if any): -
Any comment: -

Parameter: EF_{CO2,m}
Data unit: t CO\(_2\)/GJ
Description: CO\(_2\) emission factor per unit of energy of the fuel \(m \)
Source of data: Actual measured or local data is to be used. If not available, regional data should be used and, in its absence, IPCC defaults can be used from the most recent version of IPCC Guidelines for National Greenhouse Gas Inventories
Measurement procedures (if any): -
Any comment: In case of existing plants, this parameter shall be based on historical records of the plant for the year prior to the start of the CDM project activity. If data is available for multiple years prior to the start of the project activity, the average value of up to three years shall be taken.
In case of Greenfield cement plants, this parameter shall be determined based on the monitoring value of first operational year. For ex-ante calculation, project participants can use data from technology supplier information, quarry test results, latest feasibility study used for plant procurement and latest production plan to calculate the baseline emissions

III. MONITORING METHODOLOGY

Monitoring procedures

All data collected as part of monitoring should be archived electronically and be kept at least for 2 years after the end of the last crediting period. 100% of the data should be monitored if not indicated otherwise in the tables below. All measurements should be conducted with calibrated measurement equipment according to relevant industry standards.

In addition, the monitoring provisions in the tools referred to in this methodology apply.

Data and parameters monitored

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>(B_{Cy})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t BC</td>
</tr>
<tr>
<td>Description:</td>
<td>Blended cement produced and sold in the domestic market in year (y) (t BC)</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>This will be calculated and measured as part of normal operations Use weight meter</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Annually</td>
</tr>
</tbody>
</table>
QA/QC procedures:
Cross check measurement results with records (i.e. invoices) for sold blended cement

Data / Parameter: \(P_{\text{Blend},y} \)
- **Data unit:** t clinker/t BC
- **Description:** Share of clinker per tonne of BC in year \(y \)
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):**
 - Any comment: -
- **Monitoring frequency:** Annually
- **QA/QC procedures:**
 - Any comment: -

Data / Parameter: \(\text{InCaO}_y \)
- **Data unit:** t CaO
- **Description:** Non-carbonated CaO content in the raw material in year \(y \)
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):**
 - This parameter is calculated as the CaO content (%) of the raw material in year \(y \) times the raw material quantity used in year \(y \) \([Q_{\text{rm},y}] \).
 - Project participants can use a conservative default value of 0% for the non-carbonated CaO content of the raw material in year \(y \).
- **Monitoring frequency:** Daily
- **QA/QC procedures:**
 - Any comment: -

Data / Parameter: \(\text{OutCaO}_y \)
- **Data unit:** t CaO
- **Description:** CaO content in the clinker produced in year \(y \)
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):**
 - This parameter is calculated as the CaO content (%) of the clinker in year \(y \) times clinker produced in year \(y \) \([\text{CLNK}_y] \). This will be calculated and measured as part of normal operations.
- **Monitoring frequency:** Daily
- **QA/QC procedures:**
 - Any comment: -
<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>InMgO<sub>y</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t MgO</td>
</tr>
<tr>
<td>Description:</td>
<td>Non-carbonated MgO content in the raw material in year y</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>This parameter is calculated as the MgO content (%) of the raw material in year y times the raw material quantity in year y [Q<sub>rmy</sub>]. This will be calculated and measured as part of normal operations</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Daily</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>OutMgO<sub>y</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t MgO</td>
</tr>
<tr>
<td>Description:</td>
<td>MgO content in the clinker produced in year y</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>This parameter is calculated as the MgO content (%) of the clinker in year y times clinker produced in year y [CLNK<sub>y</sub>]. This will be calculated and measured as part of normal operations</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Daily</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>Q<sub>rmy</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t raw materials</td>
</tr>
<tr>
<td>Description:</td>
<td>Quantity of clinker raw material used in year y</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Use weight meter</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Annually</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>Parameter required to calculate InCaO<sub>y</sub> and InMgO<sub>y</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>CLNK<sub>y</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data unit:</td>
<td>t clinker</td>
</tr>
<tr>
<td>Description:</td>
<td>Clinker production in year y</td>
</tr>
<tr>
<td>Source of data:</td>
<td>On-site measurements in plant records</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Use weight meter</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Annually</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>-</td>
</tr>
<tr>
<td>Any comment:</td>
<td>-</td>
</tr>
</tbody>
</table>
Data / Parameter: \(FF_{i,y} \)
- **Data unit:** t fuel
- **Description:** Fossil fuel of type \(i \) consumed for clinker production in year \(y \)
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):** Use weight meter
- **Monitoring frequency:** Annually
- **QA/QC procedures:** -
- **Any comment:** -

Data / Parameter: \(EFF_{i} \)
- **Data unit:** t \(CO_2 \)/t fuel
- **Description:** Emission factor for fossil fuel \(i \)
- **Source of data:** Actual measured or local data is to be used. If not available, regional data should be used and, in its absence, IPCC defaults can be used from the most recent version of IPCC Guidelines for National Greenhouse Gas Inventories
- **Measurement procedures (if any):** -
- **Monitoring frequency:** -
- **QA/QC procedures:** -
- **Any comment:** -

Data / Parameter: \(PELE_{grid,CLNK,y} \)
- **Data unit:** MWh
- **Description:** Grid electricity for clinker production in year \(y \)
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):** Use electricity meter
- **Monitoring frequency:** Monthly
- **QA/QC procedures:** -
- **Any comment:** -

Data / Parameter: \(PELE_{sg,CLNK,y} \)
- **Data unit:** MWh
- **Description:** Self generation of electricity for clinker production in year \(y \)
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):** Use electricity meter
- **Monitoring frequency:** Monthly
- **QA/QC procedures:** -
- **Any comment:** -
Data / Parameter: ADD_y
- **Data unit:** t additives
- **Description:** Amount of additives used for BC production in project plant in year y
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):** Use weight meter
- **Monitoring frequency:** Monthly and aggregated yearly
- **QA/QC procedures:** -
- **Any comment:** -

Data / Parameter: ADDNS,y
- **Data unit:** t additives
- **Description:** Amount of additives for which the project participants could not substantiate that they are surplus in year y
- **Source of data:** National data or data collected by the project participants
- **Measurement procedures (if any):** Demonstrate using the L1 approach in Step 8
- **Monitoring frequency:** Yearly
- **QA/QC procedures:** -
- **Any comment:** -

Data / Parameter: PELEgrid,BC,y
- **Data unit:** MWh
- **Description:** Grid electricity for grinding BC in year y
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):** Use electricity meter
- **Monitoring frequency:** Monthly
- **QA/QC procedures:** -
- **Any comment:** -

Data / Parameter: PELEsg,BC,y
- **Data unit:** MWh
- **Description:** Self generated electricity for grinding BC in year y
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):** Use electricity meter
- **Monitoring frequency:** Monthly
- **QA/QC procedures:** -
- **Any comment:** -
Data / Parameter: \(\text{PELE}_{\text{grid}, \text{ADD}, y} \)
- **Data unit:** MWh
- **Description:** Grid electricity for grinding additives in year \(y \)
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):** Use electricity meter
- **Monitoring frequency:** Monthly
- **QA/QC procedures:** -
- **Any comment:** -

Data / Parameter: \(\text{PELE}_{\text{sg}, \text{ADD}, y} \)
- **Data unit:** MWh
- **Description:** Self generation electricity for grinding additives in year \(y \)
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):** Use electricity meter
- **Monitoring frequency:** Monthly
- **QA/QC procedures:** -
- **Any comment:** -

Data / Parameter: \(F_{i,k,j,y} \)
- **Data unit:** mass or volume unit
- **Description:** Amount of fuel \(ik \) consumed by relevant power sources \(j \) in year \(y \)
- **Source of data:** On-site measurements in plant records
- **Measurement procedures (if any):** Use weight or volume meter
- **Monitoring frequency:** Monthly
- **QA/QC procedures:** -
- **Any comment:** -
Data / Parameter: \(NCV_i^k \)

Data unit: GJ/mass or volume unit
Description: Net calorific value per mass or volume unit of a fuel \(i^k \)

Source of data: The following data sources may be used if the relevant conditions apply:

<table>
<thead>
<tr>
<th>Data source</th>
<th>Conditions for using the data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Values provided by the fuel supplier in invoices</td>
<td>This is the preferred source if the carbon fraction of the fuel is not provided (Option A)</td>
</tr>
<tr>
<td>b) Measurements by the project participants</td>
<td>If a) is not available</td>
</tr>
<tr>
<td>c) Regional or national default values</td>
<td>If b) is not available</td>
</tr>
<tr>
<td>d) IPCC default values at the upper limit of the uncertainty at a 95% confidence interval as provided in Table 1.2 of Chapter 1 of Vol. 2 (Energy) of the 2006 IPCC Guidelines on National GHG Invenories</td>
<td>If c) is not available</td>
</tr>
</tbody>
</table>

Measurement procedures (if any): For a) and b): Measurements should be undertaken in line with national or international fuel standards

Monitoring frequency: For a) and b): The NCV should be obtained for each fuel delivery, from which weighted average annual values should be calculated
For c): Review appropriateness of the values annually
For d): Any future revision of the IPCC Guidelines should be taken into account

QA/QC procedures: Verify if the values under a), b) and c) are within the uncertainty range of the IPCC default values as provided in Table 1.2, Vol. 2 of the 2006 IPCC Guidelines. If the values fall below this range collect additional information from the testing laboratory to justify the outcome or conduct additional measurements. The laboratories in a), b) or c) should have ISO17025 accreditation or justify that they can comply with similar quality standards

Any comment: -

Data / Parameter: \(GEN_{j,y} \)

Data unit: MWh
Description: Electricity generated by the source \(j \) in the year \(y \)

Source of data: On-site measurements in plant records

Measurement procedures (if any): Use electricity meter

Monitoring frequency: Annually

QA/QC procedures: -

Any comment: -
<table>
<thead>
<tr>
<th>Data / Parameter</th>
<th>Data unit</th>
<th>Description</th>
<th>Source of data</th>
<th>Measurement procedures (if any)</th>
<th>Monitoring frequency</th>
<th>QA/QC procedures</th>
<th>Any comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{\text{PI,blend,y}}$</td>
<td>t additives/t BC</td>
<td>Share of additives per tonne of BC in year y</td>
<td>On-site measurements in plant records</td>
<td>-</td>
<td>Annually</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$A_{\text{BSL,blend,y}}$</td>
<td>t additives/t BC</td>
<td>Baseline share of additives per tonne of BC updated for year y</td>
<td>On-site measurements in plant records</td>
<td>In case of existing plants, the value of $A_{\text{BSL,blend,y}}$ is 1 - mass fraction of clinker in the relevant cement type produced in the proposed project activity plant before the implementation of the CDM project activity, as determined in Step 2, approach (iii) In case of Greenfield cement plants, the value of $A_{\text{BSL,blend,y}}$ is $1-B_{\text{Blend,y}}$.</td>
<td>Annually</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$T_{\text{F,cons}}$</td>
<td>kg fuel/kilometre</td>
<td>Fuel consumption for the vehicle per kilometre</td>
<td>From plant records</td>
<td>-</td>
<td>Annually</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$D_{\text{add,source}}$</td>
<td>km</td>
<td>Distance between the source of additives and the project activity plant</td>
<td>From plant records</td>
<td>-</td>
<td>Annually</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Data / Parameter: TEF
- **Data unit:** kg CO₂/kg fuel
- **Description:** Emission factor for transport fuel
- **Source of data:** Actual measured or local data is to be used. If not available, regional data should be used and, in its absence, IPCC defaults can be used from the most recent version of IPCC Guidelines for National Greenhouse Gas Inventories
- **Measurement procedures (if any):**
- **Monitoring frequency:** Annually
- **QA/QC procedures:**
- **Any comment:**

Data / Parameter: Qadd
- **Data unit:** t additives
- **Description:** Quantity of additives carried in one trip per vehicle
- **Source of data:** From plant records
- **Measurement procedures (if any):** Use weight meter
- **Monitoring frequency:** Annually
- **QA/QC procedures:**
- **Any comment:**

Data / Parameter: ELE\textsubscript{conveyor}, ADD
- **Data unit:** MWh
- **Description:** Annual electricity consumption for conveyor system for additives
- **Source of data:** From plant records
- **Measurement procedures (if any):** Use electricity meter
- **Monitoring frequency:** Annually
- **QA/QC procedures:**
- **Any comment:**

IV. REFERENCES AND ANY OTHER INFORMATION

Not applicable.
History of the document

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Nature of revision(s)</th>
</tr>
</thead>
</table>
| 07.1.0 | EB 67, Annex #11 May 2012 | Amendment to:
- Include as an option, conservative default values for the calcium oxide (CaO) concentration in the raw material;
- Include a provision for the demonstration that an abundant surplus of the additives is available in an area, with a radius of at least 200 km, from where the additives are sourced; and
- Other editorial changes. |
| 07.0.0 | EB 66, Annex 36 2 March 2012 | Revision to:
- Align the first of its kind barrier and investment barrier analysis with the latest guidelines on first of its kind barrier and objective demonstration and assessment of barriers;
- Improve and reorganize the procedure to determine the baseline benchmark of share of clinker and its update;
- Correct the calculation of leakage emissions due to transport of additives and improve the procedure to calculate leakage from diversion of additives;
- Delete the leakage emissions due to electricity consumption for conveyor system for additives;
- Correct and reorganize the calculation of emission reductions;
- Correct the description of parameters to make them consistent within the methodology;
- Improve the clarity of the language; and
- Add a reference to methodological tools “Assessment of the validity of the original/current baseline and to update of the baseline at the renewal of the crediting period” and “Project and leakage emissions from road transportation of freight”. |
| 06.0.0 | EB 65, Annex 17 25 November 2011 | Revision to:
- Provide an approach to determine the data to calculate baseline emissions in case of Greenfield cement plants;
- Improve the methodology so as to increase its readability, consistency and simplicity;
- Clarify that the methodology is not applicable to situations where cement blending is common at the construction site; and
- Provide an approach to determine the blending benchmark taking into account the imported cement.
- Change of title from “Consolidated Baseline Methodology for Increasing the Blend in Cement Production” to “Increasing the Blend in Cement Production”. |
| 05 | EB 50, Annex 10 16 October 2009 | Revision to include:
- Guidance on applying the “Tool for the demonstration and assessment of additionality”;
- Updated monitoring tables; and
- Editorial changes to improve the clarity of the methodology text. |
| 04 | EB 35, Paragraph 24 19 October 2007 | Revision to include the “Tool to calculate the emission factor for an electricity system”. |
| 03 | EB 24, Annex 2 19 May 2006 | Revision to amend the three options for selecting the benchmark for baseline emissions. |
| 02 | EB 22, Annex 7 28 November 2005 | Revision to correct some of the formulae relating to leakage and references to the blend content in formulae. |
| 01 | EB 21, Annex 12 30 September 2005 | Initial adoption. |

Decision Class: Regulatory
Document Type: Standard
Business Function: Methodology