Draft approved baseline and monitoring methodology AM00XX

“Methodology for installation of energy efficient transformers in a power grid”

I. SOURCE, DEFINITIONS AND APPLICABILITY

Source

This methodology is based on the project activity "Installation of energy efficiency transformers in Shandong power grid", proposed by Hitachi Industrial Equipment Systems Co., Ltd, whose baseline and monitoring methodology and project design document were prepared by Hitachi, Ltd., Japan.

For more information regarding the proposal and its consideration by the Executive Board please refer to case NM0243: “Methodology for installation of energy efficiency transformers in a power grid” on <http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html>

This baseline and monitoring methodology refers to latest version of the following tools¹:

- “Combined tool to identify baseline scenario and demonstrate additionality”;
- “Tool to calculate emission factor for an electrical system”

Selected approach from paragraph 48 of the CDM modalities and procedures

“Emissions from a technology that represents an economically attractive course of action, taking into account barriers to investment”

Definitions

For the purpose of this methodology, the following definitions apply:

Distribution grid:
A distribution grid is the portion of the electric system that is dedicated to delivering electric energy to the end-users. It delivers power at medium voltage levels (generally less than 50 kV).

Load losses:
Load losses or coil losses are losses due to resistance in the electrical winding of the transformer. These losses include eddy current losses in the primary and secondary conductors of the transformer.

No-load losses:
No-load losses or core losses are losses due to transformer core magnetizing or energizing. These losses occur whenever a transformer is energized and remain constant regardless of the amount of electricity flowing through it.

Geographical region:
The geographical region is defined as the concession area² which contains project activity areas.

¹ Please refer to: <http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html>
Project activity area:
It is defined as a distinct predefined area within the geographical region where the project activity is implemented.

Performance level
It is a certified level that defines maximum levels of load and no-load losses for transformers installed in the geographical region, which is provided either by an agency appointed by the Government or by an independent entity.

Type of transformer
The type of transformer for the purpose of this methodology is defined by its capacity (kVA) and transformation ratio. It is assumed that different combinations of these specifications will have different load/no-load losses.

Applicability
The methodology is applicable to the following project activities:

- (1) Replacement of existing lower-efficiency transformers with higher efficiency transformers in an existing distribution grid; or
- (2) Install new high efficiency transformers in the new areas covered by expansion of the distribution grid where in the absence of the project, lower efficiency transformers would have been installed.

The following conditions apply to the methodology:

- (a) Emission reductions due to reduction in no-load losses\(^3\) alone are claimed;
- (b) Installation of transformers within the distribution grid is governed by performance levels established by local or national regulation, which define maximum permissible load losses and no-load losses;
- (c) Load losses of the transformers implemented under the project activity are demonstrated to be equal or lower than the load losses in transformers that would have been installed in absence of the project activity at rated load;
- (d) The transformers installed in the project activity comply with national/international QA/QC standards. This shall be demonstrated through certification based on test conducted using relevant national/international testing standards from an accredited entity / government recognised entity. The certification report shall include information on the measured performance levels for load losses and no-load losses in various operational conditions and in addition, the associated uncertainty;
- (e) Project proponent has to implement a system to ensure that the replaced transformers are not used in other parts of the distribution grid or in another distribution grid;

2 Concession area is the territory where an specific utility has the authorization to operate

3 The methodology does not credit reduction in emissions due to reduction in load-losses as the load-losses of the transformer vary with the load and, therefore, crediting such reduction would requires continuous monitoring of the load on the project activity transformer
(f) A complete list of co-ordinates of project activity transformers is provided to uniquely identify them;

(g) Data on total number and type of transformers installed over the last three years previous the project implementation is available.

In addition, the applicability conditions included in the tools referred above apply.

Further notes on applicability of the methodology

NOTE 1:
The methodology is not applicable if the technology of the transformers installed in the project activity represents more than 20% of the total installed transformers in the geographic region during 3 years prior to the implementation of the project activity.

For example if the project activity starts in 2009, then project proponent has to use historical data for the years 2006, 2007 and 2008 and then evaluate if 20% of the total transformers installed during these years, irrespective of the type of transformer, use the same technology as the technology used in the project activity. If yes, then this methodology is not applicable for the project activity.

NOTE 2:
For applicability condition (c), project proponents shall demonstrate that the rated load losses for project activity transformers are lower than or equal to baseline transformer load losses for each type of transformer installed.

\[\forall k, \quad LL_{PR,i} \leq LL_{BL,k} \]

Where:

\(LL_{BL,k} \) = Load loss of the transformer type \(k \) which would have been installed (Watt).

\(LL_{PR,i} \) = Load loss of transformer “i” installed during project activity (Watt)

\(k \) = Type of transformer

\(LL_{BL,k} \) should be the minimum value of the load losses defined by the performance levels as per national regulations and the performance levels provided by the manufacturers of commercially available transformers that would be installed in the baseline scenario.

NOTE 3:
Transformers can be installed at any time during the crediting period in the project’s geographical region, but they will only be eligible to obtain CERs from the beginning of the subsequent monitoring period. Project participants shall provide the following information related with each one of the installed transformers under the project activity:

- Date of installation;
- Exact localization of the transformer (providing serial number and co-ordinates of the location);
- Technical data of each transformer, for example transformation ratio, capacity, etc.;
- Load losses and no-load losses provided by the manufacturer;
For transformers installed after registration of the project activity, the verifying DOE shall ensure that relevant applicability conditions are met.

II. BASELINE METHODOLOGY PROCEDURE

Procedure for selection of baseline scenario and demonstration of additionality

The baseline scenario is identified using latest version of the “Combined tool to identify baseline scenario and demonstrate additionality”. In applying the following list of credible and plausible alternative scenarios for the replacement of transformers, inter alia, shall be considered:

1. Replacement or installation of transformers adopting a more efficient technology other than the technology of the project activity;
2. Continuation of current practice. Replacement or installation of transformer with the most commonly used transformers in the geographical region where the project activity is implemented;
3. Replacement or installation of transformers as per new performance levels enforced by regulation;
4. Replacement or installation of transformers adopting the project activity technology without CDM benefits.

The list of credible and plausible alternatives will be narrowed down, by removing those, which do not comply with legal requirements. Use the “Combined tool” to identify the most likely baseline scenario.

Barrier analysis

Barriers may include, among others:

Technological barriers, inter alia:

- Manufacture of energy efficiency material is a state-of-the-art technology and there is only limited production in the host country. Insufficient availability of the material could also lead to limited production of energy efficiency transformers. In addition, the manufacturing technology of energy efficiency transformers is not widely disseminated in the host country.
- Lack of familiarity or first-of-its-kind project significantly hinders the ability to implement the proposed project activity;
- Lack of information regarding the technical performance of the type of transformers installed in local environmental and operational conditions in the host country.

Investment barriers, inter alia:

- Financing capacity of the project proponent vis-à-vis other investment opportunities;
- Debt funding may not be available for innovative project activity;
- Lack of domestic or foreign direct investment in the country where the CDM project activity is to be implemented;
- Subsidies may exist that inhibit investments in energy efficiency projects; or,
Inability of the management to dedicate resources for implementation of the CDM project activity.

Prevailing practice barriers, inter alia:

- Silicon steel plate distribution transformers are preferred from the aspects of reliability and stability;
- Continue procuring transformers from a specific manufacturer, e.g. long-term contract as a common commercial practice.

Common Practice analysis

For the purpose of this methodology, a “common practice” technology is defined as the transformer technology type that is most frequently used among all the transformers available in the market in the relevant geographical region.

The methodology is applicable only if any of the following scenarios are identified as the most likely baseline options:

- Scenario 2: “Continuation of current practice i.e. replacement i.e. replacement or installation of transformer with the most commonly used transformers in the geographical region where the project activity is implemented”; or
- Scenario 3: “Replacement or installation of transformers as per performance levels enforced by regulation”

Project boundary

The project boundary is the geographical region where project activity transformers are installed during the crediting period. The boundary includes the electricity system (or grid) within which the project activity area is located.
The greenhouse gases included in or excluded from the project boundary are shown in the following table.

Table 1: Emissions sources included in or excluded from the project boundary

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>Included?</th>
<th>Justification / Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Fossil fuel power plants in the grid</td>
<td>CO₂</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Activity</td>
<td>Fossil fuel power plants in the grid</td>
<td>CO₂</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baseline emissions

The baseline emissions, BE_y, in a year ‘y’ are given by:

$$BE_y = \sum_{k=1}^{n} \left(NLL_{BL,k,y} \times n_k \right) \times MP \times (1 - Br) \times EF_{CO2,grid,y} \times 10^{-6} \quad (1)$$

Where:
- BE_y = Baseline emissions in year ‘y’ (tCO₂/year)
- k = Index ‘k’ represents type of transformers, installed by the project activity. Type represents capacity and transformation ratio.
- $NLL_{BL,k,y}$ = No-load loss rate, expressed in Watts of the transformer type ‘k’ which would have been installed by the end of the year ‘y-1’ in the baseline scenario. No-load loss rate for each baseline transformer type ‘k’ is determined individually, as given in equation 2.
- MP = Duration of each monitoring period (hours).
- Br = Black out rate of each monitoring period (%)
- $EF_{CO2,grid,y}$ = CO₂ emission factor of the grid for year ‘y’ where the project activity is implemented (tCO₂/MWh). EF is calculated adopting the combined margin and as described in the “tool to calculate the emission factor of an electricity system”.
- n_k = Total cumulative number of type ‘k’ transformers installed by the project activity at the end of year ‘y-1’

Procedure to estimate Baseline no-Load Loss ($NLL_{BL,k}$)

(1) Baseline scenario 2: $NLL_{BL,k}$ is calculated as per the procedure defined as follows:

4 An example on how to estimate the baseline emissions is presented in Annex 1 of the methodology
Baseline scenario 3: $NLL_{BL,k}$ is defined by the performance levels enforced through regulation.

Project Emissions

The project emissions $P_{E,y}$ in a year y is given by:

$$P_{E,y} = \sum_{k=1}^{k} [(1 + UNC) \times NLL_{{PR,k,y}} \times n_k \times MP \times (1 - Br) \times EF_{CO2,grid,y} \times 10^{-6}]$$

(3)

Where:

- $P_{E,y}$ = Project emissions in year ‘y’ (tCO2/year)
- k = Index ‘k’, type of transformer, in the geographical region of the project activity area installed by the project activity at the end of year ‘$y-1$’
- $NLL_{{PR,k,y}}$ = No-load loss rate of the energy efficiency transformer i which will have been installed by the end of the year ‘$y-1$’ in the project activity. (Watts)
- MP = Duration of each monitoring period. (hours)
- Br = Black out rate of each monitoring period (%)
- $EF_{CO2,grid,y}$ = CO2 emission factor of the grid for year ‘y’ where the project activity is implemented (tCO2/MWh). EF is calculated adopting the combined margin and as described in the “tool to calculate the emission factor of an electricity system”.
- UNC = Maximum allowable uncertainty for the no-load losses stated in the certification report provided by an accredited entity.
- n_k = Total cumulative number of type ‘k’ transformers installed by the project activity at the end of year ‘$y-1$’

Leakage

No significant leakage is anticipated from the project activity, provided that the system is place to ensure that the replaced transformers are not used elsewhere. To demonstrate that the replaced transformers are not used, the project proponents shall provide documentary evidence that the transformers were scrapped. Verification by the DOE determining that replaced transformers have not been distributed at other places is required.

5 This means averaging out the no-load losses of selected top 20% of manufacturers who have lowest no-load losses.
6 If a specific type of transformer installed in the project activity in last five years, was not installed before in the distribution grid/ or was not manufactured in the geographic region then the baseline NLL for such transformer cannot be estimated using this procedure. In such cases, a revision to this methodology should be proposed.
Emission reductions

Emission reductions are calculated as follows:

\[ER_y = BE_y - PE_y \] \hspace{1cm} (4)

Where:
- \(ER_y \) = Emission reductions during the year \(y \) (tCO\(_2\))
- \(BE_y \) = Baseline emissions during the year \(y \) (tCO\(_2\))
- \(PE_y \) = Project emissions during the year \(y \) (tCO\(_2\))

Changes required for methodology implementation in 2\(^{nd}\) and 3\(^{rd}\) crediting periods

It is required to address the validity of the baseline scenario at the start of the second and third crediting period for a project activity.

Common practice analysis shall be carried out for the 2\(^{nd}\) and 3\(^{rd}\) crediting periods to demonstrate the validity of the baseline scenario. It has to be demonstrated that the ratio of transformers technology type used in the project activity should be lower than 20%, when compared with the total operational transformers in the same geographical region.

Baseline emissions have to be reassessed before start a new crediting period

Data and parameters not monitored

In addition to the parameters listed in the tables below, the provisions on data and parameters not monitored in the tools referred to in this methodology apply

The following items are demanded to confirm applicability conditions:
Parameter: \(NLL_i \)
- **Data unit:** W
- **Description:** No-load loss rate of the transformer type ‘\(k \)’ which would have been installed by the end of the year ‘\(y-1 \)’ in the baseline scenario.
- **Source of data:** There are two sources of information:
 1. Local, national regulation for transformer performance levels
 2. Information provided by the manufacturer
- **Measurement procedures (if any):** The parameter should be the lowest value of no-load losses defined by national regulations and the average performance level provided by the manufacturers of all transformers installed in the geographical region whose performance is among the top 20% of their type in the last 5 years prior the implementation of the project activity.

Parameter: \(LL_{bl,k} \)
- **Data unit:** W
- **Description:** Load loss rate of the transformer type ‘\(k \)’ that would have been installed in the baseline scenario.
- **Source of data:** There are two sources of information:
 1. Local, national legislation for transformer performance levels;
 2. Information provided by the manufacturer.
- **Measurement procedures (if any):** The parameter should be the minimum value for load losses between the performance levels defined by national regulations and the performance levels provided by the manufacturers of commercially available transformers that might be installed in the baseline scenario.

Parameter: \(NLL_{reg,k} \)
- **Data unit:** W
- **Description:** No load losses defined by the national regulations for \(k \) type of transformers (W).
- **Source of data:** Local, national legislation for transformer performance levels;

Any comment:
- Use the latest regulations only.
ID Number: 4.
Parameter: $NLL_{AVG,k}$
Data unit: W
Description: Average of no-load loss rate provided by the manufacturers of all k type of transformers installed in the geographical region whose performance is among the top 20% of their type in the last five years prior to the implementation of the project activity.
Source of data: Specifications supplied by manufacturers at the time of installation.

III. MONITORING METHODOLOGY

Monitoring procedures

This monitoring methodology requires the monitoring of the following items to confirm applicability conditions:

- Load loss rate (W) of lower-efficiency transformers that would have been installed in the baseline scenario;
- The actual installed type, capacity, transformation ratio and load loss rate (W) of each high-efficiency transformer installed by the project activity;
- Historical installation data of the transformer types for the past three (3) years.

This monitoring methodology requires the monitoring of the following items to complete project emission calculations:

- No-load loss rate (W) of energy efficiency transformers installed by the project activity;
- The actual installed capacity (kVA) of each high-efficiency transformer installed by the project activity;
- CO2 emission factor (tCO2/MWh) of the grid;
- Yearly blackout rate of the grid during the year ‘y’ (%);
- The number of transformers which are installed in the project activity and are in operation. (i.e. consider the number of high-efficiency transformers removed since installed).

All data collected as part of monitoring should be archived electronically and be kept at least for 2 years after the end of the last crediting period. 100% of the data should be monitored if not indicated otherwise in the tables below. All measurements should be conducted with calibrated measurement equipment according to relevant industry standards.

In addition, the monitoring provisions in the tools referred to in this methodology apply.
Data and parameters monitored

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$EF_{CO_2\text{,grid},y}$</td>
<td>CO$_2$ emission factor of the grid</td>
</tr>
<tr>
<td>Data unit:</td>
<td>t CO$_2$/MWh</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Official statistics or data obtained from local power company</td>
</tr>
<tr>
<td>Measurement procedures (if any):</td>
<td>Calculated by the “combined margin method” described in specified in “Tool to calculate emission factor of an electricity system”</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Yearly</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td></td>
</tr>
<tr>
<td>Any comment:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP</td>
<td>Duration of each monitoring period.</td>
</tr>
<tr>
<td>Data unit:</td>
<td>Hours</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Official statistics or data obtained from local power company</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>To be specified in the CDM-PDD document</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td></td>
</tr>
<tr>
<td>Any comment:</td>
<td>Project participant shall define the period (i.e. if monitoring period is a year, then MP=8760)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data / Parameter:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br</td>
<td>Black out rate in the corresponding monitoring period.</td>
</tr>
<tr>
<td>Data unit:</td>
<td>%</td>
</tr>
<tr>
<td>Source of data:</td>
<td>Official statistics or data obtained from local power company</td>
</tr>
<tr>
<td>Monitoring frequency:</td>
<td>Yearly</td>
</tr>
<tr>
<td>QA/QC procedures:</td>
<td>The blackout data will be collected as part of normal business operations. The data shall be cross-checked with other internal company reports.</td>
</tr>
<tr>
<td>Any comment:</td>
<td></td>
</tr>
<tr>
<td>Data / Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>k</td>
<td>type of transformer (type based on capacity and transformation ratio)</td>
</tr>
<tr>
<td>n_k</td>
<td>Cumulative number of transformers of type ‘k’ installed by the end of year ‘y-1’</td>
</tr>
<tr>
<td>$NLL_{PR,k,y}$</td>
<td>No-load loss rate of the high energy efficiency transformers type ‘k’ installed by end of year ‘y-1’ by the project activity</td>
</tr>
</tbody>
</table>

Source of data: Record of installation of high efficiency transformers provided by installation entities.

Measurement procedures (if any):

Monitoring frequency:

QA/QC procedures:

Any comment:
Data / Parameter: \(LL_{pr, j} \)

Data unit: W
Description: Load loss rate of energy efficiency transformers installed by the project activity.
Source of data: Manufacturer’s performance test report which measured at the time of pre-delivery inspection.
Measurement procedures (if any): Load losses values at a rated current which measured at the time of pre-delivery inspection
Monitoring frequency: Every time the transformers are installed
QA/QC procedures: Manufacturer’s performance test report submitted by the manufacturer validated by certification entity.
Any comment: A certification report shall be provided by an accredited entity

Data / Parameter: Number of transformers installed under the project activity

Data unit: No unit
Description: Historical record of installed transformers under the project activity.
Source of data: The record shall include following information
- Date of installation
- Exact localization of the transformer (providing serial number and co-ordinates of the location)
- Technical data of each transformer (ratio, capacity, etc.)
 - Rated load losses
 - Nominal no-load losses
Measurement procedures (if any):
Monitoring frequency: After every new installation
QA/QC procedures:
Any comment:

Data / Parameter: Number of replaced transformers

Data unit: No unit
Description: Historical record of replaced transformers under the project activity. The record shall include information on how the transformers are not going to be use in other parts of the grid or in another grid
Source of data: Record of removal/installation of transformers provided by installation entities.
Records of disposition of transformers provided by utility
Measurement procedures (if any):
Monitoring frequency: Yearly
QA/QC procedures:
Any comment:
References and any other information
Annex 1: Example to estimate baseline emissions:

<table>
<thead>
<tr>
<th>Transformer type</th>
<th>No-load losses as per regulation</th>
<th>Average number of transformers installed in the last three years previous implementation of the project activity (y=0)</th>
<th>No load losses rate (NLL) (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Existing transformers in the host country</td>
<td>Existing transformers in the host country</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer A</td>
<td>Manufacturer B</td>
<td>Manufacturer C</td>
</tr>
<tr>
<td>1</td>
<td>55</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>98</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Estimation of $NLL_{BL,k}$

$NLL_{BL,k} = \min\{NLL_{reg,k}, NLL_{AVG,k}\}$

Estimation of no-load losses rate (NLL) for transformer type 1:

$NLL_{reg,1} = 55$

$NLL_{AVG,1} = 50$ (Average of top 20%)

Therefore,

$NLL_{BL,1} = \min\{55, 50\} = 50$ W

Summary of NLL for each type of transformer in the baseline scenario

$NLL_{BL,1} = 60$ W

$NLL_{BL,2} = 75$ W

$NLL_{BL,3} = 90$ W

$NLL_{BL,4} = 98$ W

<table>
<thead>
<tr>
<th>Transformer type</th>
<th>Total transformers installed by year ‘y-1’</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Baseline Emissions are estimated as following

$$BE_y = \sum_{k=1}^{4} (NLL_{BL,k} \times n_{k,y-1}) \times MP \times (1 - Br) \times EF_{CO2,grid,y} \times 10^{-6}$$
\[(60 \times 10 + 75 \times 12 + 90 \times 20 + 98 \times 10) \times MP \times (1 - Br_y) \times EF_{CO_2, grid,y} \times 10^{-6} \]
\[= 4280 \times MP \times (1 - Br_y) \times EF_{CO_2, grid,y} \times 10^{-6} \]