Draft approved consolidated baseline methodology ACMXXX

“Consolidated baseline methodology for waste gas and/or heat for power generation”

Sources

This consolidated baseline methodology is based on elements from the following methodologies:

- NM0031-rev: “OSIL - 10 MW Waste Heat Recovery Based Captive Power Project, India,” whose baseline study, monitoring and verification plan and project design document were prepared by Experts and Consultants of OSIL;
- NM0087: “Baseline methodology for electricity generation using waste heat recovery in sponge iron plants”, prepared by Agrienergy Ltd, Shri Bajrang Power and Ispat Ltd;

For more information regarding the proposals and their consideration by the Executive Board please refer to http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html.

This methodology also refers to ACM0002 “Consolidated baseline methodology for grid-connected electricity generation from renewable sources” and the latest version of the “Tool for the demonstration and assessment of additionality”.

Applicability

This methodology applies to project activities that generate electricity from waste heat or the combustion of waste gases in industrial facilities.

The methodology applies to:

- electricity generation project activities that displace electricity generation with fossil fuels in the electricity grid;
- electricity generation project activities that displace captive electricity generation from fossil fuels, electricity.

The methodology covers both new and existing facilities. For existing facilities, the methodology applies to existing capacity, as well as to planned increases in capacity during the crediting period. If capacity expansion is planned, the added capacity must be treated as a new facility.

The methodology is applicable under the following conditions:

- Project activities that use waste heat or waste gas where the use of waste heat or the waste gas is not the most likely baseline scenario
- The methodology is applicable where no fuel switch is done in the process where the waste heat or the waste gas is produced.
This consolidated baseline methodology shall be used in conjunction with the approved consolidated monitoring methodology ACMXXXX (“Consolidated monitoring methodology for waste gas and/or heat for power generation”).

Project boundary

For the purpose of determining GHG emissions of the project activity, project participants shall include:
- CO₂ emissions from combustion from auxiliary fossil fuels

For the purpose of determining baseline emissions, project participants shall include the following emission sources:
- CO₂ emissions from fossil fuel fired power plants connected to the electricity system;
- CO₂ emissions from fossil fuel fired captive power plants supplying the project site facility;

The spatial extent of the project boundary comprises the waste heat or gas sources, captive power generating equipment, any equipment used to provide auxiliary heat to the waste heat recovery process, and the power plants connected physically to the electricity grid that the proposed project activity will affect.

The combined margin will be calculated as described in ACM0002, both in terms of the relevant grid definitions and the emissions factors.

Table 1 illustrates which emissions sources are included and which are excluded from the project boundary for determination of both baseline and project emissions.

Table 1: Overview on emissions sources included in or excluded from the project boundary

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>Justification / Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Grid electricity generation</td>
<td>CO₂</td>
<td>Included Main emission source</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded Excluded for simplification. This is conservative.</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded Excluded for simplification. This is conservative.</td>
</tr>
<tr>
<td>Captive electricity generation</td>
<td>CO₂</td>
<td>Included Main emission source</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded Excluded for simplification. This is conservative.</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded Excluded for simplification. This is conservative.</td>
</tr>
<tr>
<td>On-site fossil fuel consumption due to the</td>
<td>CO₂</td>
<td>Included May be an important emission source</td>
</tr>
<tr>
<td>project activity</td>
<td>CH₄</td>
<td>Excluded Excluded for simplification.</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded Excluded for simplification.</td>
</tr>
<tr>
<td>Project Activity Combustion of waste gas</td>
<td>CO₂</td>
<td>Excluded It is assumed that this gas would have been burned in</td>
</tr>
<tr>
<td>for electricity generation</td>
<td>CH₄</td>
<td>Excluded Excluded for simplification.</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Excluded Excluded for simplification.</td>
</tr>
</tbody>
</table>
Identification of alternative baseline scenarios

The baseline scenario alternatives should include all possible options that provide or produce electricity for in-house consumption and/or sale to grid and/or other consumers. The project participant shall exclude baseline options that:

- do not comply with legal and regulatory requirements; or
- depend on key resources such as fuels, materials or technology that are not available at the project site.

The project participant shall provide evidence and supporting documents to exclude baseline options that meet the above mentioned criteria.

The possible alternative scenarios in absence of the CDM project activity would be as follows:

(a) The proposed project activity not undertaken as a CDM project activity;
(b) Import of electricity from the grid;
(c) Existing or new captive power generation on-site, using other energy sources than waste heat and/or gas, such as coal, diesel, natural gas, hydro, wind, etc;
(d) A mix of options (b) and (c), in which case the mix of grid and captive power should be specified;
(e) Other uses of the waste heat and waste gas;
(f) The continuation of the current situation, whether this is captive or grid-based power supply (if not already included in the options above).

Among the alternatives that do not face any prohibitive barriers, the most economically attractive alternative should be considered as the baseline scenario.

Additionality

The additionality of the project activity shall be demonstrated and assessed using the latest version of the “Tool for the demonstration and assessment of additionality” agreed by the CDM Executive Board, available at the UNFCCC CDM web site.

Project Emissions

Project Emissions are applicable only if auxiliary fuels are fired for generation startup, in emergencies, or to provide additional heat gain before entering the Waste Heat Recovery Boiler.

Project Emissions are given as:

\[PE_y = \sum_i Q_i \times NCV_i \times EF_i \times \frac{44}{12} \times OXID_i \]

1 Please refer to: <http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html>
where:

\[PE_y \] Project emissions in year \(y \) (tCO2)

\[Q_i \] Mass or volume unit of fuel \(i \) consumed (t or m³)

\[NCV_i \] Net calorific value per mass or volume unit of fuel \(i \) (TJ/t or m³)

\[EF_i \] Carbon emissions factor per unit of energy of the fuel \(i \) (tC/TJ)

\[OXID_i \] Oxidation factor of the fuel \(i \) (%)

The oxidation factor of the fuel is taken from page 1.29 in the 1996 Revised IPCC Guidelines for default values. For the other factors, local values should be used wherever possible. If no such values are available, country-specific values (see, e.g., IPCC Good Practice Guidance) are preferable to IPCC worldwide default values.

Baseline Emissions

Baseline emissions are given as:

\[BE_{electricity,y} = EG_y \cdot EF_{electricity,y} \] (2)

where:

\[EG_y \] Net quantity of electricity supplied to the manufacturing facility by the project during the year \(y \) in MWh, and

\[EF_y \] CO₂ baseline emission factor for the electricity displaced due to the project activity during the year \(y \) (tCO₂/MWh).

In determining the net quantity of electricity supplied, project participants shall subtract the quantity of electricity required for the operation of the power plant.

Option 1. If baseline scenario is captive power generation

If the baseline scenario is determined to be captive power generation (either existing or new), the Emissions Factor for displaced electricity is calculated as follows:

\[EF_{captive,y} = \frac{EF_{CO₂,i}}{Eff_{captive}} \times \frac{44}{12} \times \frac{3.6TJ}{1000MWh} \] (3)

where:

\[EF_{captive,y} \] Emissions factor for captive power generation (tCO₂/MWh)

\[EF_{CO₂,i} \] CO₂ emissions factor of fuel used in captive power generation (tC/TJ)

\[Eff_{captive} \] Efficiency of the captive power generation (%)

44/12 Carbon to Carbon Dioxide conversion factor

3.6/1000 TJ to MWh conversion factor
To estimate boiler efficiency, project participants may choose between the following two options:

Option A

Use the highest value among the following three values as a conservative approach:

1. Measured efficiency prior to project implementation;
2. Measured efficiency during monitoring;
3. Manufacturer nameplate data for efficiency of the existing boilers.

Option B

Assume a boiler efficiency of 100% based on the net calorific values as a conservative approach.

Option 2. If baseline scenario is grid power imports

If the baseline scenario is determined to be grid power supply, the Emissions Factor for displaced electricity is calculated as in ACM0002.

Option 3. If baseline scenario includes both captive and imported power

\[
EF_y = s_{grid} \cdot EF_{grid,y} + s_{captive} \cdot EF_{captive,y}
\]

If the baseline scenario selection determines that both captive and grid power would be used, then the emissions factor for the baseline is the weighted average of the emissions factor for grid power and captive power.

- \(EF_y \): CO\(_2\) baseline emission factor for the electricity displaced due to the project activity during the year \(y \) (tCO\(_2\)/MWh).
- \(EF_{grid,y} \): CO\(_2\) baseline emission factor for the grid electricity displaced due to the project activity during the year \(y \) (tCO\(_2\)/MWh).
- \(EF_{captive,y} \): CO\(_2\) baseline emission factor for the captive electricity displaced due to the project activity during the year \(y \) (tCO\(_2\)/MWh).
- \(s_{grid} \): Share of facility electricity demand supplied by grid imports over the last 3 years (%)
- \(s_{captive} \): Share of facility electricity demand supplied by captive power over the last 3 years (%)

Leakage

No leakage is considered.

2 If the facility is a new facility, then the share of grid versus import power determined to be the most likely baseline scenario should be used.
Emission Reduction

The emission reduction ER_y by the project activity during a given year y is the difference between the baseline emissions though substitution of electricity generation with fossil fuels (BE_y) and project emissions (PE_y), as follows:

$$ER_y = BE_y - PE_y$$

(5)

where:

- ER_y are the emissions reductions of the project activity during the year y in tons of CO$_2$,
- BE_y are the baseline emissions due to displacement of electricity during the year y in tons of CO$_2$,
- PE_y are the project emissions during the year y in tons of CO$_2$.

In determining emission coefficients, emission factors or net calorific values in this methodology, guidance by the 2000 IPCC Good Practice Guidance should be followed where appropriate. Project participants may either conduct regular measurements or they may use accurate and reliable local or national data where available. Where such data is not available, IPCC default emission factors (country-specific, if available) may be used if they are deemed to reasonably represent local circumstances. All values should be chosen in a conservative manner and the choice should be justified.
Draft approved consolidated monitoring methodology ACMXXXXX

“Consolidated monitoring methodology for waste gas and/or heat for power generation”

Sources

This consolidated baseline methodology is based on elements from the following methodologies:

- NM0031-rev: “OSIL - 10 MW Waste Heat Recovery Based Captive Power Project, India,” whose baseline study, monitoring and verification plan and project design document were prepared by Experts and Consultants of OSIL;
- NM0087: “Baseline methodology for electricity generation using waste heat recovery in sponge iron plants”, prepared by Agrienergy Ltd, Shri Bajrang Power and Ispat Ltd;

For more information regarding the proposals and their consideration by the Executive Board please refer to http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html.

This methodology also refers to ACM0002 “Consolidated baseline methodology for grid-connected electricity generation from renewable sources”.

Applicability

This methodology applies to project activities that generate electricity from waste heat or the combustion of waste gases in industrial facilities.

The methodology applies to:

- electricity generation project activities that displace electricity generation with fossil fuels in the electricity grid,
- electricity generation project activities that displace captive electricity generation from fossil fuels, electricity

The methodology covers both new and existing facilities. For existing facilities, the methodology applies to existing capacity, as well as to planned increases in capacity during the crediting period. If capacity expansion is planned, the added capacity must be treated as a new facility.

The methodology is applicable under the following conditions:

- Project activities that use waste heat or waste gas where the use of waste heat or the waste gas is not the most likely baseline scenario
- The methodology is applicable where no fuel switch is done in the process where the waste heat or the waste gas is produced.
This consolidated monitoring methodology shall be used in conjunction with the approved consolidated baseline methodology ACMXXXX (“Consolidated baseline methodology for waste gas and/or heat for power generation”).

Monitoring Methodology

The methodology requires monitoring of the following:

- Net electricity generation from the proposed project activity;
- Data needed to calculate carbon dioxide emissions from fossil fuel consumption due to the project activity;
- Data needed to recalculate the operating margin emission factor, if needed, based on the choice of the method to determine the operating margin (OM), consistent with “Consolidated baseline methodology for grid-connected electricity generation from renewable sources” (ACM0002);
- Data needed to recalculate the build margin emission factor, if needed, consistent with “Consolidated baseline methodology for grid-connected electricity generation from renewable sources” (ACM0002);
- Data needed to calculate the emissions factor of captive power generation
For Project Emissions

<table>
<thead>
<tr>
<th>ID number</th>
<th>Data type</th>
<th>Data variable</th>
<th>Data unit</th>
<th>Measured (m), calculated (c) or estimated (e)</th>
<th>Recording frequency</th>
<th>Proportion of data to be monitored</th>
<th>How will the data be archived? (electronic/paper)</th>
<th>For how long is archived data to be kept?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Q_i</td>
<td>Quantitative</td>
<td>Volume of the auxiliary fuel used by project activity</td>
<td>tonnes or m³</td>
<td>measured</td>
<td>Continuously</td>
<td>100%</td>
<td>Electronic/Paper</td>
<td>Credit period + 2 yrs</td>
<td>To be measured and used for estimation of project emissions.</td>
</tr>
<tr>
<td>2. NCV_f</td>
<td>Quantitative</td>
<td>Net Calorific Value of Fuel (if any)</td>
<td>TJ per t or m³</td>
<td>measured</td>
<td>Monthly</td>
<td>Random</td>
<td>Electronic/Paper</td>
<td>Credit period + 2 yrs</td>
<td>To be measured and used for estimation of project emissions.</td>
</tr>
<tr>
<td>3. EF_i</td>
<td>Quantitative</td>
<td>Carbon emissions factor of fuel</td>
<td>tC/TJ</td>
<td>National sources or IPCC defaults</td>
<td>Monthly</td>
<td>Random</td>
<td>Electronic/Paper</td>
<td>Credit period + 2 yrs</td>
<td>To be measured and used for estimation of project emissions.</td>
</tr>
</tbody>
</table>
For Electricity Generation by Project Activity

<table>
<thead>
<tr>
<th>ID number</th>
<th>Data type</th>
<th>Data variable</th>
<th>Data unit</th>
<th>Measured (m), calculated (c) or estimated (e)</th>
<th>Recording frequency</th>
<th>Proportion of data to be monitored</th>
<th>How will the data be archived? (electronic/paper)</th>
<th>For how long is archived data to be kept?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. EG\textsubscript{GEN}</td>
<td>Quantitative</td>
<td>Total Electricity Generated</td>
<td>MWh/yr</td>
<td>online measurement</td>
<td>Continuously</td>
<td>100%</td>
<td>Electronic</td>
<td>Credit period + 2 yrs</td>
<td>Monitoring location: meters at plant and DCS will measure the data. Manager In-charge would be responsible for regular calibration of the meter.</td>
</tr>
<tr>
<td>5. EG\textsubscript{AUX}</td>
<td>Quantitative</td>
<td>Auxiliary Electricity(^3)</td>
<td>MWh/yr</td>
<td>online measurement</td>
<td>Continuously</td>
<td>100%</td>
<td>Electronic</td>
<td>Credit period + 2 yrs</td>
<td>Monitoring location: meters at plant and DCS will measure the data. Manager In-charge would be responsible for regular calibration.</td>
</tr>
<tr>
<td>6. EG\textsubscript{y}</td>
<td>Quantitative</td>
<td>Net Electricity supplied to facility</td>
<td>MWh/yr</td>
<td>calculated (EG\textsubscript{GEN} - EG\textsubscript{AUX})</td>
<td>Continuously</td>
<td>100%</td>
<td>Electronic</td>
<td>Credit period + 2 yrs</td>
<td>Calculated from the above measured parameters. Algorithm for project emission calculations given in baseline methodology.</td>
</tr>
</tbody>
</table>

\(^3\) This will include electrical energy utilized by the power generating equipment in the project boundary.
For Baseline emission factor: grid power

<table>
<thead>
<tr>
<th>ID number</th>
<th>Data type</th>
<th>Data variable</th>
<th>Data unit</th>
<th>Measured (m) calculated (c) estimated (e)</th>
<th>For which baseline method(s) must this element be included</th>
<th>Recording frequency</th>
<th>Proportion of data monitored</th>
<th>How will data be archived? (electronic/paper)</th>
<th>For how long is archived data kept?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. EF_y</td>
<td>Emission factor</td>
<td>CO2 emission factor of the grid</td>
<td>tCO₂/MWh</td>
<td>calculated</td>
<td>Simple OM BM</td>
<td>Yearly</td>
<td>100%</td>
<td>Electronic</td>
<td>During the crediting period and two years after</td>
<td>Calculated as a weighted sum of the OM and BM emission factors</td>
</tr>
<tr>
<td>8. EF_OM,y</td>
<td>Emission factor</td>
<td>CO2 Operating Margin emission factor of the grid</td>
<td>tCO₂/MWh</td>
<td>calculated</td>
<td>Simple OM</td>
<td>Yearly</td>
<td>100%</td>
<td>Electronic</td>
<td>During the crediting period and two years after</td>
<td>Calculated as indicated in the relevant OM baseline method above</td>
</tr>
<tr>
<td>9. EF_BM,y</td>
<td>Emission factor</td>
<td>CO2 Build Margin emission factor of the grid</td>
<td>tCO₂/MWh</td>
<td>calculated</td>
<td>BM</td>
<td>Yearly</td>
<td>100%</td>
<td>Electronic</td>
<td>During the crediting period and two years after</td>
<td>Calculated as [(\sum_i F_{i,y} \times COEF_i)] / [(\sum_m GEN_{m,y})] over recently built power plants defined in the baseline methodology</td>
</tr>
<tr>
<td>10. F_{i,j,y}</td>
<td>Fuel quantity</td>
<td>Amount of each fossil fuel consumed by each power source / plant</td>
<td>t or m³/yr</td>
<td>measured</td>
<td>Simple OM BM</td>
<td>Yearly</td>
<td>100%</td>
<td>Electronic</td>
<td>During the crediting period and two years after</td>
<td>Obtained from the power producers, dispatch centers or latest local statistics.</td>
</tr>
<tr>
<td>ID number</td>
<td>Data type</td>
<td>Data variable</td>
<td>Data unit</td>
<td>Measured (m)</td>
<td>Calculated (c)</td>
<td>Estimated (e)</td>
<td>For which baseline method(s) must this element be included</td>
<td>Recording frequency</td>
<td>Proportion of data monitored</td>
<td>How will data be archived? (electronic/paper)</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>11. COEF_{i,k}</td>
<td>Emission factor coefficient</td>
<td>CO2 emission coefficient of each fuel type and each power source / plant</td>
<td>tCO_2 / t or m³</td>
<td>measured</td>
<td>Simple OM BM</td>
<td></td>
<td></td>
<td>Yearly</td>
<td>100%</td>
<td>Electronic</td>
</tr>
<tr>
<td>12. GEN_{j,y}</td>
<td>Electricity quantity</td>
<td>Electricity generation of each power source / plant</td>
<td>MWh / yr</td>
<td>measured</td>
<td>Simple OM BM</td>
<td></td>
<td></td>
<td>Yearly</td>
<td>100%</td>
<td>Electronic</td>
</tr>
</tbody>
</table>
For Baseline emission factor: captive power

<table>
<thead>
<tr>
<th>ID number</th>
<th>Data type</th>
<th>Data variable</th>
<th>Data unit</th>
<th>Measured (m) calculated (c) estimated (e)</th>
<th>Recording frequency</th>
<th>Proportion of data monitored</th>
<th>How will data be archived? (electronic/paper)</th>
<th>For how long is archived data kept?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. $E_{\text{FCO}_2,i}$</td>
<td>Emission factor</td>
<td>CO2 emission factor of fuel used for captive power generation</td>
<td>tC/TJ</td>
<td>National sources or IPCC defaults</td>
<td>Yearly</td>
<td>100%</td>
<td>Electronic</td>
<td>During the crediting period and two years after</td>
<td></td>
</tr>
<tr>
<td>14. $E_{\text{F}\text{Eff}_{\text{captive}}}$</td>
<td>Efficiency of captive power plant</td>
<td>Energy efficiency of captive power plant</td>
<td>%</td>
<td>measured</td>
<td>Yearly</td>
<td>100%</td>
<td>Electronic</td>
<td>During the crediting period and two years after</td>
<td>Depending on option chosen in baseline, measured before or after project implementation</td>
</tr>
</tbody>
</table>
Quality Control (QC) and Quality Assurance (QA) Procedures

All measurements should use calibrated measurement equipment that is maintained regularly and checked for its functioning. QA/QC procedures for the parameters to be monitored are illustrated in the following table.

<table>
<thead>
<tr>
<th>Data</th>
<th>Uncertainty level of data (High/Medium/Low)</th>
<th>Are QA/QC procedures planned for these data?</th>
<th>Outline explanation why QA/QC procedures are or are not being planned.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2.</td>
<td>Low</td>
<td>Yes</td>
<td>This data will be required for the calculation of project emissions.</td>
</tr>
<tr>
<td>4.-6.</td>
<td>Low</td>
<td>Yes</td>
<td>This data will be used for the calculation of project electricity generation.</td>
</tr>
<tr>
<td>7.-9.</td>
<td>Low</td>
<td>No</td>
<td>This data is calculated, so does not need QA procedures</td>
</tr>
<tr>
<td>10.-12.</td>
<td>Low</td>
<td>No</td>
<td>This data will be required for the calculation of baseline emissions (from grid electricity) and will be obtained through published and official sources.</td>
</tr>
<tr>
<td>13.-14.</td>
<td>Low</td>
<td>Yes</td>
<td>This data will be required for the calculation of baseline emissions (from captive power plant electricity).</td>
</tr>
</tbody>
</table>

Note on QA/QC: The parameters related to the performance of the project will be monitored using meters and standard testing equipment, which will be regularly calibrated following standard industry practices.