Revision to the approved baseline methodology AM0003

“Simplified financial analysis for landfill gas capture projects”

Source

This methodology is based on the Project Design Document and Baseline Study, Monitoring and Verification Plan developed for the NovaGerar landfill gas to energy project by S.A. Paulista in Nova Iguaçu, Rio de Janeiro, Brazil. These documents were prepared by EcoSecurities Ltd. (version 14, July 2003) for the Carbon Finance Unit of the World Bank. For more information regarding the proposal and its consideration by the Executive Board please refer to case NM0005-rev: “Nova Gerar landfill gas to energy project” on

<http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html>

The methodology also refers to the latest version of the “Tool to determine project emissions from flaring gases containing Methane”.

Selected approach from paragraph 48 of the CDM modalities and procedures

“Emissions from a technology that represents an economically attractive course of action, taking into account barriers to investment.”

Applicability

This methodology is applicable to landfill gas capture project activities where:

• The captured gas is flared; or
• The captured gas is used to generate electricity, but no emission reductions are claimed for displacing or avoiding electricity generation by other sources.

This methodology must be used in conjunction with the monitoring methodology below. It is applicable only where the only plausible outcomes are a business-as-usual scenario (with minor changes and modifications) and the proposed project. In other words, the methodology is inapplicable where a plausible outcome is substantial change in practice or technology different from the proposed technology.

1 Please refer to <http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html>
Emission Reduction\(^2\)

The greenhouse gas emission reduction achieved by the project activity (ER\(_y\)) during a given year is the difference between the amount of methane actually destroyed (MD\(_{\text{project},y}\)) and the amount of methane destroyed in the absence of the project activity (MD\(_{\text{baseline},y}\)), times the approved Global Warming Potential value for methane (GWP\(_{\text{CH}_4}\)).

\[
ER_y = (\text{MD}_{\text{project},y} - \text{MD}_{\text{baseline},y}) \times \text{GWP}_{\text{CH}_4}
\] (1)

The amount of methane destroyed in the absence of the project activity is the amount of landfill gas that would be flared or otherwise destroyed absent the project activity taking into account the effectiveness of the gas collection systems that would be imposed by regulatory or contractual requirements or similar circumstances at the time of inception of the project\(^3\) (the “Effectiveness Adjustment Factor” (EAF)).

\[
\text{MD}_{\text{baseline},y} = \text{MD}_{\text{project},y} \times \text{EAF}
\] (2)

EAF is defined as the ratio of the destruction efficiency of the collection and destruction system mandated by regulatory or contractual requirement to that of the collection and destruction system in the project activity. The ‘Effectiveness Adjustment Factor’ shall be revised at the start of each new crediting period taking into account the amount of GHG flaring that occurs as part of common industry practice at that point in the future.

For the Project Design Document, (\textit{ex ante}) emission reduction estimates are made by projecting the future GHG emissions of the landfill using the US EPA First Order Decay Model. These estimates are for reference purposes only, since emission reductions will be determined (\textit{ex post}) by metering the actual quantity of methane captured and destroyed once the project activity is operational.

Based on the above equations, the greenhouse gas emission reduction (ER\(_y\)) achieved by the project activity during a given year (\(y\)) is equal to the methane destroyed (MD\(_{\text{project},y}\), expressed in tonnes) due to the project activity during that year less the effectiveness adjustment factor (EAF) multiplied by the approved Global Warming Potential value for methane (GWP\(_{\text{CH}_4}\)).

\[
ER_y = \text{MD}_{\text{project},y} (1 - \text{EAF}) \times \text{GWP}_{\text{CH}_4}
\] (3)

\(^2\) The Executive Board, at its twelfth meeting, requested the secretariat to prepare a technical paper, for consideration by the Panel on Methodologies of the Board, on the impact of oxidation of biogas in the calculation of emission reductions of methane (CH\(_4\)) for landfill gas project activities. The Board agreed that the Meth Panel shall prepare a recommendation on this issue to be presented to the Board, for its consideration, at its fifteenth meeting. This methodology might be revised in order to incorporate considerations by the Board on this issue. Any revisions shall not affect CDM project activities already registered using this current version of the methodology.

\(^3\) The Executive Board, at its eleventh meeting, requested the Meth Panel to prepare recommendations on the need for ensuring consistency regarding how should changes on regulatory or contractual requirements be considered when establishing baseline scenarios and calculating emission reductions. This methodology maybe be further revised depending on considerations by the Board on this issue. Any revisions shall not affect CDM project activities already registered using this current version of the methodology.
ER, is the greenhouse gas emission reduction measured in tonnes of CO₂ equivalents (tonnes CO₂e).
MDproject is the methane destroyed by the project activity measured in tonnes of methane. EAF is the
effectiveness adjustment factor expressed as a decimal. The default value is 0.20. The approved
Global Warming Potential value for methane for the first commitment period is 21 tonnes CO₂e/tonne
CH₄. Thus, GWP_CH₄ = 21 until December 31, 2012.

The methane destroyed by the project activity (MDproject) during a year is determined by monitoring
the quantity of methane actually flared and used to generate electricity.

\[
MD_{project} = MD_{flared} + MDelectricity_y \tag{4}
\]

\[
MD_{flared} = \frac{LFG_y \times w_{CH4,y} \times FE \times D_{CH4}}{GWP_{CH4}} \tag{5}
\]

\[
MD_{flared} = (LFG_y \times w_{CH4,y} \times D_{CH4}) - (PE_{flare,y}/GWP_{CH4}) \tag{5}
\]

Where LFG, is the quantity of landfill gas flared fed to the flare during the year measured in cubic
metres (m³), w_{CH4,y} is the methane fraction of the landfill gas as measured periodically during the
year, FE is the flare efficiency (the fraction of the methane destroyed) expressed as a fraction, D_{CH4}
is the methane density expressed in tonnes of methane per cubic metre of methane (tCH₄/m³CH₄),
PE_{flare,y} project emissions from flaring of the residual gas stream in year y (tCO₂e) determined
following the procedure described in the “Tool to determine project emissions from flaring gases
containing Methane”.

\[
MDelectricity_y = EG_y \times HR / EC_{CH4} \tag{6}
\]

The quantity of methane destroyed by electricity generation is the amount of electricity generated
(EG) generated during the year measured in MWh, HR is the heat rate measured in GJ/MWh, and
EC_{CH4} is the energy content of methane measured in GJ/tCH₄.

Project Boundary

The project boundary is the site of the project activity where the gas is captured and destroyed / used.

Baseline

The baseline considers that some of the methane generated by the landfill may be captured and
destroyed to comply with regulations or contractual requirements, or to address safety and odour
concerns.

The EAF reflects the effectiveness of the gas collection systems that would be imposed by regulatory
or contractual requirements or industry practice at the time of inception of the project and likely
changes over the course of the crediting period. The EAF shall be revised at the start of each new
crediting period.

1 To be measured at wet basis.
2 At STP the density of methane is 0.000716 tCH₄/m³CH₄.
Additionality

The baseline scenario and additionality are determined in a step process.

Step 1. Provide a convincing justification that there is no plausible baseline scenario except the project and the business as usual (BAU) scenarios. If there is another plausible baseline scenario, this methodology cannot be used for the proposed project activity.

Step 2. Calculate a conservative internal rate of return (IRR) for the proposed project activity excluding expected revenue from the sale of CERs. The calculation must include the incremental investment cost, the operations and maintenance costs, and all other costs of upgrading the BAU scenario to the proposed project activity. The calculation must also include all revenues generated by the project activity, including revenue from the sale of electricity and cost savings due to avoided electricity purchases, except revenue from the sale of CERs. An IRR is calculated conservatively if the assumptions made tend to raise the IRR of the project scenario instead of lowering it. To ensure this, values that tend to lead to a higher IRR should be used for all assumptions. Conservatism of these assumptions should be ensured by obtaining expert opinions and by the Operational Entity validating the project.

Step 3: Determine whether the project IRR is significantly lower than a conservatively (i.e. rather low) expected and acceptable IRR for an alternative to this project or a comparable project type in the relevant country. The conservatively acceptable IRR can be based on:

- Government bond rates or other appropriate estimates of the cost-of-capital (e.g. commercial lending rates);
- Expert views on expected IRRs for this or comparable project types;
- Other hurdle rates that can be applied for the country or sector.

The choice of conservatively acceptable IRR should be justified.

If the project IRR is clearly and significantly lower than the conservatively acceptable IRR, the project is not an economically attractive course of action. Therefore it can be assumed that the BAU alternative is the most economically attractive course of action and the most likely baseline scenario, and that the project is additional.

Step 4: Analyze the anticipated development of the most likely baseline scenario during the crediting period and provide a summary description.

Leakage

The only source of leakage is the emissions resulting from generating the electricity used to pump the landfill gas in the additional collection equipment.

6 BAU is understood to mean the continuation of key present policies and practices. If BAU is conceived of as a set of concentric circles, this implies that no changes are expected to take place at the “core”—the “core” is constituted by the key present practices and policies. Changes at the “periphery”, however, may likely happen over time, as for instance minor regulations and policy adjustments. But such minor changes will not have any impact on the “core” which therefore will remain intact and unchanged.
If sufficient electricity is generated from recovered landfill gas to operate the collection system, there is no leakage. If purchased electricity is used to operate the collection system exceeds the total amount of electricity sold back to the grid, the associated emissions should be calculated in the manner specified for leakage in the approved baseline methodology AM0002 (“Greenhouse Gas Emission Reductions through Landfill Gas Capture and Flaring where the Baseline is established by a Public Concession Contract”) with the resulting emissions being deducted from the estimated emission reduction during the year.
Revision to the approved monitoring methodology AM0003

“Simplified financial analysis for landfill gas capture projects”

Source

This methodology is based on the NovaGerar Landfill gas to energy project by S.A. Paulista in Nova Iguaçu, Rio de Janeiro, Brazil whose Baseline study, Monitoring and Verification Plan and Project Design Document were prepared by EcoSecurities Ltd. (version 14, July 2003) for the Carbon Finance Unit of the World Bank. For more information regarding the proposal and its consideration by the Executive Board please refer to case NM0005-rev: “Nova Gerar landfill gas to energy project” on http://cdm.unfccc.int/methodologies/approved.

The methodology also refers to the latest version of the “Tool to determine project emissions from flaring gases containing Methane”.

Applicability

This monitoring methodology can be used for project activities that reduce greenhouse gas emissions through landfill gas capture and destruction of the methane by flaring and/or generation of electricity. This methodology must be used in conjunction with the baseline methodology above.

Monitoring Methodology

The monitoring methodology is based on direct measurement of the amount of landfill gas captured and destroyed at the flare platform and the electricity generating unit(s) as shown in Figure 1. The monitoring plan provides for continuous measurement of the quantity and quality of LFG fed to the flare and the electricity generated. The main variables that need to be determined are the quantity of methane actually flared (MDflared) and the quantity of methane used to generate electricity (MDelectricity). They are determined as follows:

Methane collected and flared: As shown in Figure 1, the amount of methane actually flared will be determined by monitoring the:

• Amount of landfill gas collected (LFG) [m³ - using a continuous flow meter];
• Percentage of landfill gas that is methane (wCH₄) [% - using a continuous analyser or, alternatively, with periodical measurements, at a 95% confidence level , using calibrated portable gas meters and taking a statistically valid number of samples];
• Flare working hours [hours – using a run-time meter]

In addition, the methane content of the flare emissions will be analysed quarterly to determine the flare efficiency (FE), measured as the fraction of time in which the gas is combusted in the flare multiplied by the efficiency of the flaring process.

• The parameters used for determining the project emissions from flaring of the residual gas stream in year y (PEflare,y) should be monitored as per the “Tool to determine project emissions from flaring gases containing Methane”.

Please refer to <http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html>
Temperature (T) and pressure (p) of the landfill gas are required to determine the density of methane in the landfill gas.

Methane collected and used to generate electricity: The amount of methane used to generate electricity can be determined from the amount of electricity generated with the following monitored information:
- The amount of electricity generated (E_G) [MWh metered];
- The heat rate of the electricity generator (HR) [GJ/MWh, determined through periodic testing];
- The energy content of methane (EC_{CH_4}) [GJ/tCH$_4$].

Figure 1

To estimate leakage the electricity used by the pumping equipment for the collection system needs to be metered. Electricity sold to the grid should be deducted from the electricity purchased prior to calculating any leakage.

1 The Executive Board may revise this methodology based on further recommendations of the Meth Panel to reflect more accuracy in metering the methane destruction by electricity generation. Any revisions shall not affect CDM project activities already registered using this current version of the methodology.
This monitoring methodology provides for direct and continuous measurement of the actual quantity of landfill gas flared fed to the flare and of the methane content of the landfill gas flared using a continuous flow meter and a continuous methane analyser. The continuous methane analyser is important because the methane content of landfill gas captured can vary by more than 20% during a single day due to gas capture network conditions (dilution with air at wellheads, leakage on pipes, etc.).

The monitoring methodology is commonly used on landfills with gas to energy plant where it is necessary to have a strict control of the fuel for the energy plant. The measurement equipment for gas quality (humidity, particulate, etc.) is sensitive, so a strong QA/QC procedure for the calibration of this equipment is needed.
Data to be collected or used to monitor emissions from the project activity, and how this data will be archived

<table>
<thead>
<tr>
<th>ID</th>
<th>Data variable</th>
<th>Data unit</th>
<th>Measured (m), calculated (c) or estimated (e)</th>
<th>Recording Frequency</th>
<th>Proportion of data to be monitored</th>
<th>How will the data be archived? (electronic : e / paper : p)</th>
<th>For how long is archived data kept?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>LFG<sub>y</sub> Amount of landfill gas to flares</td>
<td>m³</td>
<td>m</td>
<td>Continuous</td>
<td>100%</td>
<td>Electronic</td>
<td>Duration of crediting period</td>
<td>Measured by a flow meter. Data will be aggregated monthly and yearly.</td>
</tr>
<tr>
<td>2.</td>
<td>EG<sub>y</sub> Amount of electricity generated</td>
<td>MWh</td>
<td>m</td>
<td>Continuous</td>
<td>100%</td>
<td>Electronic</td>
<td>Duration of crediting period</td>
<td>Measured by a kWh meter. Data will be aggregated monthly and yearly.</td>
</tr>
<tr>
<td>3.</td>
<td>HR Heat rate of the generator</td>
<td>GJ/MWh</td>
<td>m and c</td>
<td>Semi-annual, monthly if unstable</td>
<td>n/a</td>
<td>Electronic</td>
<td>Duration of crediting period</td>
<td>Data will be used to test and, if necessary, correct the generator’s name plate heat rate</td>
</tr>
<tr>
<td>4.</td>
<td>PE<sub>flare,y</sub> Project emissions from flaring of the residual gas stream in year y efficiency</td>
<td>tCO₂<sub>e</sub></td>
<td>m and c</td>
<td>Semi-annual, monthly if unstable</td>
<td>n/a</td>
<td>Electronic</td>
<td>Duration of crediting period</td>
<td>The parameters used for determining the project emissions from flaring of the residual gas stream in year y (PE<sub>flare,y</sub>) should be monitored as per the “Tool to determine project emissions from flaring gases containing Methane”. Methane content of flare exhaust gas.</td>
</tr>
<tr>
<td>5.</td>
<td>w<sub>CH₄,y</sub> Methane fraction in the landfill gas</td>
<td>%</td>
<td>m and c</td>
<td>Continuous</td>
<td>100%</td>
<td>Electronic</td>
<td>Duration of crediting period</td>
<td>Measured by continuous gas quality analyzer. To be measured at wet basis.</td>
</tr>
<tr>
<td>6.</td>
<td>Annual Carbon Dioxide Equivalent Avoided</td>
<td>%</td>
<td>e</td>
<td>Every 7 years</td>
<td>A minimum of 10 control sites</td>
<td>Electronic</td>
<td>Duration of crediting period</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Data variable</td>
<td>Data unit</td>
<td>Measured (m), calculated (c) or estimated (e)</td>
<td>Recording Frequency</td>
<td>Proportion of data to be monitored</td>
<td>How will the data be archived? (electronic : e / paper : p)</td>
<td>For how long is archived data kept?</td>
<td>Comment</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-----------</td>
<td>---</td>
<td>--------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>7.</td>
<td>Temperature of the landfill gas</td>
<td>°C</td>
<td>m</td>
<td>Continuously / periodically</td>
<td>100%</td>
<td>Electronic</td>
<td>During the crediting period and two years after</td>
<td>Measured to determine the density of methane DCH₄.</td>
</tr>
<tr>
<td>8.</td>
<td>Pressure of the landfill gas</td>
<td>Pa</td>
<td>m</td>
<td>Continuously / periodically</td>
<td>100%</td>
<td>Electronic</td>
<td>During the crediting period and two years after</td>
<td>Measured to determine the density of methane DCH₄.</td>
</tr>
<tr>
<td>9.*</td>
<td>CO₂ emission intensity of the electricity</td>
<td>t CO₂ / MWh</td>
<td>c</td>
<td>Annually</td>
<td>100%</td>
<td>Electronic</td>
<td>During the crediting period and two years after</td>
<td>Required to determine CO₂ emissions from use of electricity or other energy carriers to operate the project activity</td>
</tr>
<tr>
<td>10.</td>
<td>Regulatory requirements relating to landfill gas projects</td>
<td>Test</td>
<td>n/a</td>
<td>Annually</td>
<td>100%</td>
<td>Electronic</td>
<td>During the crediting period and two years after</td>
<td>Required for any changes to the adjustment factor (AF) or directly MDreg,y</td>
</tr>
</tbody>
</table>

The approved monitoring methodology AM0002 (Greenhouse Gas Emission Reductions through Landfill Gas Capture and Flaring where the Baseline is established by a Public Concession Contract) also required monitoring of: the LFG temperature and pressure, and any parameters as required by the “Tool to determine project emissions from flaring gases containing Methane”, flare temperature, and flare working hours. These variables shall also be monitored here unless the project developer can justify that this information is not needed in order to adequately estimate LFGₙ.
Data to be collected or used to monitor leakage, and how this data will be archived

<table>
<thead>
<tr>
<th>ID</th>
<th>Data type</th>
<th>Data variable</th>
<th>Data unit</th>
<th>Measured (m), calculated (c) or estimated (e)</th>
<th>Recording Frequency</th>
<th>Proportion of data to be monitored</th>
<th>How will the data be archived? (electronic : e / paper : p)</th>
<th>For how long is archived data kept?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Electricity</td>
<td>Total amount electricity used for gas pumping</td>
<td>[kWh] m</td>
<td>Continuously</td>
<td>100% Daily : e Monthly : p</td>
<td>Project lifetime</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quality control (QC) and quality assurance (QA) procedures to be undertaken for the items monitored. (see tables above)

Appropriate quality control and quality assurance procedures are needed for the monitoring equipment and the data collected.

<table>
<thead>
<tr>
<th>Data</th>
<th>Uncertainty level of data (High/Medium/Low)</th>
<th>Are QA/QC procedures planned for these data?</th>
<th>Outline explanation why QA/QC procedures are or are not being planned.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Low</td>
<td>Yes</td>
<td>Flow meters will be subject to a regular maintenance and testing regime to ensure accuracy.</td>
</tr>
<tr>
<td>2.</td>
<td>Low</td>
<td>Yes</td>
<td>Electricity meters will be subject to a regular maintenance and testing regime to ensure accuracy. Their readings will be checked by the electricity distribution company.</td>
</tr>
<tr>
<td>3.</td>
<td>Low</td>
<td>Yes</td>
<td>Regular maintenance will ensure optimal operation of engines and generators. The heat rate will be checked semi-annually, with monthly checks if the heat rate shows significant deviations from previous values.</td>
</tr>
<tr>
<td>4.</td>
<td>Low</td>
<td>Yes</td>
<td>Regular maintenance will ensure optimal operation of flares. Flare efficiency will be checked semi-annually, with monthly checks if the efficiency shows significant deviations from previous values. The parameters used for determining the project emissions from flaring of the residual gas stream in year y ($PE_{\text{flare,}y}$) should use the QA/QC procedures as per the “Tool to determine project emissions from flaring gases containing Methane”.</td>
</tr>
<tr>
<td>5.</td>
<td>Low</td>
<td>Yes</td>
<td>The gas analyzer will be subject to a regular maintenance and testing regime to ensure accuracy.</td>
</tr>
</tbody>
</table>
Miscellaneous Parameters

Factor Used for Converting Methane to Carbon Dioxide Equivalents

<table>
<thead>
<tr>
<th>Factor used (CO₂e/CH₄)</th>
<th>Period Applicable</th>
<th>Source</th>
</tr>
</thead>
</table>

1 This table is updated as reporting guidelines are modified.

Conversion Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>unit</th>
<th>Period Applicable</th>
<th>Description/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane Energy Content</td>
<td>GJ/tCH₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane Density</td>
<td>tonnes CH₄/m³CH₄ (STP)</td>
<td>default</td>
<td>Density should be corrected for local climate and altitude.</td>
</tr>
</tbody>
</table>

1 This table is updated as more scientific information becomes available or reporting guidelines are modified.